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1. Introduction
These are lecture notes for a short (3. . . 4*45 min) sum-

mary of the basic principles of thermodynamics and sta-
tistical physics. It is assumed that the audience has some
prior knowledge of these topics. The lectures are divided
into two parts. The first part considers thermodynamics as
a phenomenological theory of heat and work. The second
gives basic introduction to statistical physics which, among
others, can be used to justify thermodynamics.

Here are some books (not carefully selected) for further
reading.

• L.D. Landau and E.M. Lifshitz, Statistical Physics,
Part 2 (Pergamon, Oxford, 1980). In general the series
of books by Landau and Lifshitz is very good but I
experienced some difficulties understanding the basics
from this book.

• K. Huang, Statistical mechanics (Wiley, New York
1987). Good old book.

• R.P. Feynman, Statistical mechanics, a set of lectures
(Westwiev Press 1972). The beginning is great, but
the rest is harder.

• R. Pathria and P. Beale, Statistical Mechanics, 3rd ed..
This is used widely as a textbook.

• F. Reif, Fundamentals of Statistical and Thermal Phy-
sics.

• J. Sethna, Statistical Mechanics: Entropy, Order Pa-
rameters, and Complexity. A book with modern fla-
vor, available free online (http://pages.physics.
cornell.edu/~sethna/StatMech/).

• R. Fitzpatrick, Thermodynamics & Statistical Mec-
hanics: An Intermediate Level Course. Lecture
notes (http://farside.ph.utexas.edu/teaching/
sm1/sm1.html).

• L. Reichl, A Modern Course in Statistical Physics.

• D. Chandler, Introduction to Modern Statistical Mec-
hanics.

In these lecture I have used mainly the logic of Huang
for thermodynamics and Feynman for the derivation of the
Gibbs distribution. For other parts I do not know a definite
source.

2. Thermodynamics
In this chapter we discuss thermodynamics phenomeno-

logically. We state the laws of thermodynamics and develop
the theory based on them.

Preliminary concepts

We start by listing some basic thermodynamic concepts.

Thermodynamics deals with macroscopic systems, which
typically consist of a huge number of particles. It deals
with macroscopic variables. The most standard ones are
the pressure P , the volume V , and the temperature T , but
there are also others, the number of particles N (macrosco-
pic when counted in moles), the electric E and magnetic
B fields, the chemical concentrations ci, the flow velocity v
etc. For simplicity we concentrate here on the variables P ,
V , and T , but more generally we could have more like X,
Y etc. These quantities are well defined when the system
under study is in equilibrium. In equilibrium the variables
are related by a condition called equation of state. For the
variables P , V , and T it has the form

f(P, V, T ) = 0. (1)

This defines a surface in the 3 dimensional space with axes
P , V , and T . A thermodynamic transformation is a chan-
ge of state. The transformation is called reversible if the
change proceeds equally in the reverse direction. This is
possible for transformations that proceed slowly enough so
that the system stays in equilibrium states.

The energy change of the system with its surroundings is
divided in two contributions. Work arises from macroscopic
forces between the system and the surroundings. In system
with variables (P, T, V ) the work done by the system is

dW = PdV (2)

when the volume changes by dV . For some other variables
the Heat is the energy exchanged in the form that is not
work (in the sense just defined). It arises from energy exc-
hange by microscopic forces that does not correspond to
macroscopic motion in the system. The heat capacity of is
defined as the coefficient of proportionality C in the rela-
tion of the heat absorbed by the system and the change of
temperature,

C =
dQ

dT
. (3)

The heat capacity depends on the experimental conditions.
The usual ones are CV for constant volume and CP for
constant pressure.

Other measurable quantities of interest in the (P, T, V )
system are thermal expansion

α =
1

V

(
∂V

∂T

)
P

, (4)

and the isothermal compressibility

κT = − 1

V

(
∂V

∂P

)
T

, (5)
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and the adiabatic compressibility

κS = − 1

V

(
dV

dP

)
dQ=0

. (6)

Ideal gas is an idealized thermodynamic model. It obeys
the equation of state

PV = NkBT (7)

where kB = 1.380× 10−23 J/K is the Boltzmann constant.
In fully macroscopic units one writes

PV = nRT (8)

where n is the number of moles and R = NAkB = 8.31
J/(K mole) the gas constant and NA the Avogadro cons-
tant. Real gases obey well the ideal gas equation of state
when they are not too dense. Below an example of PV of
Nitrogen (A.S. Friedman 1950).

By fixing the constant in equations (7) and (8) we have
defined the absolute scale for the temperature T in degrees
of Kelvin. We note that in this scale the zero temperature
corresponds that the gas PV/n extrapolates to zero.

Laws of thermodynamics

The basis of thermodynamics can be compressed into a
few laws.

The first law. For arbitrary transformation from one
state to another, we measure the heat ∆Q absorbed by the
system and the work ∆W done by the system. The first
law states that the quantity ∆U defined by

∆U = ∆Q−∆W (9)

depends only on the initial and final states (not on the
intermediate ones).

Interpretation: knowing that ∆Q and −∆W are just two
forms of energy flow to the system, we see that (9) is just
the statement of energy conservation, where ∆U is the dif-
ference in the internal energy U between the initial and
final states (and thus does not depend on the intermediate
states).

The second law. The second law states that there is
no process whose only effect would be a transfer of heat
from a system at one temperature to a system at a higher
temperature.

Interpretation: This restricts processes that can take
place. The first law would allow a heat Q be taken from are
reservoir at temperature T1 and deliver it to another reser-
voir at temperature T2 > T1, but this is prohibited by the
second law. An alternative formulation of the second law
is that there is no process whose sole effect is to take heat
from a reservoir at fixed temperature and convert it all to
work. The equivalence of the two statement can be verified
by contraposition: assuming one false leads that the other
is false and vice versa.

The two laws look quite simple. They are like axioms in
a mathematical theory. It is amazing that effectively the
whole thermodynamics can be based only on these. In the
following we state some of the main consequences of these
laws. We skip most of derivations, they can be found in
Huang’s book, for example.

Consider a cyclic process of a system (an engine) that ta-
kes heat Q2 from a reservoir at temperature T2, then shifts
adiabatically (=no heat exchange) to a lower temperature
T1 where it gives off heat Q1 to a second reservoir and then
returns adiabatically to the starting point. The process of
the engine in P − V plane is illustrated below.

Q2

Q1

T2

T1

V 

P

dQ
=
0

dQ
=
0

W 

The process can also be represented schematically as be-
low.

Q2

T2

T1

W 

Q1

Assuming all processes are reversible, this is called the
Carnot engine.

By the first law the work done by the engine is W =
Q2 −Q1. By the second law Q1 6= 0. It can be shown that
for W > 0, it has to be Q2 > 0 and Q1 > 0. We define the
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efficiency (for W > 0)

η =
W

Q2
= 1− Q1

Q2
(10)

The efficiency of any reversible engine working between
the same temperatures has to be the same. (If it were not,
one could run them in series, the more efficient backwards,
which leads to contradiction with the second law.) An engi-
ne not working reversibly has to have lower efficiency than
the Carnot engine.

The Carnot engine allows to define temperature quan-
titatively. (Above we used only statements like T2 > T1.)
We set a Carnot engine working between two temperatu-
res and measure the efficiency ηCarnot. Then we define that
the ratio of the temperatures is

T1

T2
= 1− ηCarnot =

Q1,Carnot

Q2,Carnot
. (11)

This allows to assign values for all temperatures once one
temperature is chosen as reference. The temperatures de-
fined in this way can be shown to agree with the tempera-
tures defined by the ideal gas law (8).

As stated above, the efficiency of any engine is less than
that of the Carnot engine, η ≤ ηCarnot. Using equations
(10) and (11) this can be written

Q2

T2
− Q1

T1
≤ 0. (12)

Generalizing this to arbitrary cyclic process we reach the
statement

∮
dQ

T
≤ 0, (13)

where dQ is the differential of the heat absorbed by the
system. In (13) the equality is achieved for a reversible
process.

We derived equations (12) and (13) for an engine with
W > 0. These equations are valid also for a reversed en-
gine, a heat pump, where W < 0. We can use the heat
pump as a refrigerator. For a refrigerator it is reasonable
to define the coefficient of performance ηr = Q1/W . For
this we also get that its maximum is given by the Car-
not efficiency, ηr ≤ ηr,Carnot = T1/(T2 − T1). Alternati-
vely we can use the heat pump as a heater. For a hea-
ter it is reasonable to define the coefficient of performance
ηh = Q2/W . Again the maximum is given by the Carnot
efficiency, ηh ≤ ηh,Carnot = T2/(T2 − T1). Note that the
coefficient of performance can be, and often is, larger than
unity. This is the advantage of heat pumps in comparison
to direct heating, where ηh = 1.

0.0 0.2 0.4 0.6 0.8 1.0

T1

T2
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Carnot coefficients of performance

Equation (13) allows to define entropy. The entropy of
a state A relative to a reference state O is defined by the
integral in a reversible trasformation

S(A) = S(O) +

∫ A

O

dQ

T
(14)

Because of the equality in (13) for reversible transforma-
tion, the entropy is independent of the selected path in
the integration of (14). The heat differential can now be
expressed

dQ = TdS, (15)

which is somewhat symmetric to dW = PdV (2). Combi-
ning these with the first law (9) gives

dU = TdS − PdV. (16)

In this relation all quantities (U, T, S, P, V ) are defined for
any given state. This is in contrast to W and Q, which are
defined for a particular process and thus are not unique for
a given state.

Another useful property of the entropy is the following.

The entropy of a closed system can only increase.

This statement is again equivalent to the second law. Proof:
Suppose that the state of a system changes from A to B.
We do this back by a reversible transformation from B
to A. Applying (13) to the whole process and (14) to the
reversible part gives∫ B

A

dQ

T
+ S(A)− S(B) ≤ 0. (17)

For a closed system dQ = 0. The vanishing of the integral
in (17) gives S(B) ≥ S(A).

As special case we get that the equilibrium state of a
closed system corresponds to the maximum of entropy.

It is useful to define new state functions, the Helmhotz
and Gibbs free energies and the enthalpy

F = U − TS, (18)

G = U − TS + PV, (19)

H = U + PV (20)
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Let us concentrate on F . It is called free energy because
the work the system can at constant temperature is always
smaller or equal to the decrease of F

W ≤ −∆F = −∆U + T∆S. (21)

The proof follows from (17): at constant temperature the
integral equals ∆Q/T and substituting the first law (9)
gives (21). We also reach the conclusion that for a mecha-
nically isolated system at constant temperature F can only
decrease, and in equilibrium it reaches its minimum value.

Let us restate the previous result more precisely. In no-
nequilibrium state F (T, V, λ1, λ2, . . .) depends on several
internal degrees of freedom λi. In equilibrium it is

F (T, V ) = minλ1,λ2,...F (T, V, λ1, λ2, . . .). (22)

The condition F = U − TS = minimum generalizes the
zero-temperature condition U = minimum to finite tempe-
rature.

Example Phase equilibrium

Often the system can appear in two different phases, for
example liquid and gas. Suppose that we have obtained the
free energies Fa(T, V ) and Fb(T, V ) for the two phases as
shown in the figure.

T

F

Fa

Fb

Tc

According to the previous result, the phase that is rea-
lized in equilibrium is the one having lower free energy.
We conclude that there is a phase transition between the
phases at temperature where

Fa = Fb. (23)

Similar conclusions as for F apply to G under conditions
of constant temperature and pressure.

In order to remove the unknown constant S(O) in the
definition of entropy (14), one can use the third law of
thermodynamics. It states that the entropy of all subs-
tances at absolute zero temperature, T = 0, is the same,
and can be set to vanish, S = 0. In U (and also F , G and
H) an unknown constant remains.

Relations

Above we have defined quite many quantities. Depending
on the problem, any of them can be useful. Here we derive
some relations between these quantities.

Using entropy, the specific heats can be written

CV = T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

(24)

CP = T

(
∂S

∂T

)
P

=

(
∂H

∂T

)
P

(25)

and the adiabatic compressibility (6)

κS = − 1

V

(
∂V

∂P

)
S

. (26)

The internal energy differential (16) can be interpreted
that it is a function of S and V : U(S, V ). This allows write
the partial derivatives

T =

(
∂U

∂S

)
V

, P = −
(
∂U

∂V

)
S

. (27)

where the variable kept constant is given explicitly. Because
second partial derivatives are independent of the order of
derivation, we have the Maxwell relations(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

. (28)

Correspondingly we get for the Helmholz free energy

dF = −SdT − PdV, F (T, V ), (29)

S = −
(
∂F

∂T

)
V

, P = −
(
∂F

∂V

)
T

, (30)(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

. (31)

and for other functions similarly.

Based on these relations it appears that we need to know
one of the energies as a function of its proper variables. For
example, we could know U as a function of S and V , or
F as a function of T and V . From this information we
then can extract all other thermodynamic variables using
relations between the variables.

How can we then obtain the basic information? This can
be based on experiments. Many substances have been mea-
sured.

We can also think of calculating the quantities theore-
tically. For this we need statistical physics.
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3. Statistical physics

Statistical method

Statistical physics can be difficult for for several reasons.
Thinking in terms of probabilities is harder than knowing
something for sure. It is not easy to imagine very large
numbers. There is quite a number of different approaches:
one can use either classical mechanics or quantum mecha-
nics, there are different ensembles (microcanonical, cano-
nical, grand canonical). There is no fixed way of presen-
ting statistical physics. In the texts I have seen, the pre-
sentation, the order of the topics, the emphasis, and the
examples vary greatly. Some approaches are good for basic
understanding while others are good for true calculations.
Here I have chosen one (or a few) of the many alternatives.
One particular purpose is to give microscopic justification
for thermodynamics, which was presented in the first part
of these lecture.

Statistical physics is a branch of physics that applies
statistical methods to solve physical problems. We do not
know the detailed state of the system, but we make an
estimate of the possible states of the system, an ensemble.
Based on this we can predict the results of a measurement
by studying the distribution of measured quantity in the
ensemble.

Statistical methods work best for systems that are suf-
ficiently large, for example, contain a large number of par-
ticles. Statistical physics does not predict the trajectory of
a single particle, but it can very accurately predict collec-
tive properties, like the pressure or the temperature. Sta-
tistical methods can also be applied to small systems, if
the measurement lasts long enough. Supposing that the
system hops randomly between its possible states during
the measurement time, the measured average value can be
predicted by statistical methods.

Statistical methods are particularly used to study sys-
tems in equilibrium. In microscopic systems the time cons-
tants typically are short and therefore equilibrium is ac-
hieved rapidly. With growing system size, the time it takes
to achieve equilibrium grows as distant parts of the system
tend to be out of equilibrium. In practice, things on a mic-
roscopic scale are close to equilibrium but nonequilibrium
is around us everywhere on a macroscopic scale. Therefore
statistical physics works especially for systems that contain
many particles but not too many.

Density matrix

We use statistical description when the state of a system
is not precisely known. We use all the knowledge of the
system we have in order to exclude part of the generally
possible states. In a simple case we have that the remaining
possible states can be represented as linear combination
of a finite number of orthonormal states |ψi〉, where i =
1, 2, . . . ,W . If nothing else is known of the likelihood of
these states, an often used assumption is that each of these
states is equally likely, i.e. occurs with probability p =

1/W . Then the expectation value 〈Â〉 of any operator Â
can be calculated,

〈Â〉 =
1

W

W∑
i=1

〈ψi|Â|ψi〉. (32)

A convenient technical tool is to introduce the (probabi-
lity) density operator. In the general case it is defined

ρ̂ =
∑
i

ρi|ψi〉〈ψi|, (33)

where ρi is the probability of the state |ψi〉. The expecta-
tion values are then given by

〈Â〉 =
∑
i

ρi〈ψi|Â|ψi〉 =
∑
i

〈ψi|Âρ̂|ψi〉 = Tr(Âρ̂). (34)

In these equations the probabilities are assumed to be nor-
malized ∑

i

ρi = 1 ⇔ Trρ̂ = 1. (35)

We emphasize that the states |ψi〉 describe all par-
ticles in the system. The corresponding wave functions
ψi(r1, r2, . . .) depend on coordinates of all particles and
only in special cases can be expressed simply in terms of
products of single-particle wave functions φk(r).

It is important to have insight how many states there
are for a given energy interval. We look simple examples.
For a single harmonic oscillator the energies are

En = h̄ω(n+ 1
2 ), n = 0, 1, 2, . . . (36)

In the following we neglect the zero point energy. That is,
we count the energy relative to the ground state.

E

0

1

2

3

2

5

2

ħω

ħω

ħω

ħω

7

2

For N oscillators the total energy F is

F =

N∑
i=1

h̄ωini (37)

We are interested in the number of states nstates(F ) be-
low a given energy F � h̄ω. For N = 1 this is ap-
proximately F/h̄ω. For two harmonic oscillators it is
1
2 (F/h̄ω1)(F/h̄ω2) ∝ F 2 For N harmonic oscillators the
number of states below energy E seems to be c(N)FN with
some N dependent coefficient c(N). The density of states
per energy interval is

η =
dnstates(F )

dF
= Nc(N)FN−1 (38)
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For a large N (say N ∼ 1023) it is not immediately clear
how this depend on F . In order to find out we look at the
logarithm of η and its derivative with respect to energy

ln η = ln[Nc(N)FN−1] (39)

= ln[Nc(N)] + (N − 1) lnF, (40)

d ln η

dF
=
N − 1

F
≈ 1

Eave
, (41)

where Eave is the average energy per oscillator. Integrating
this gives

ln η = F/Eave + c1 (42)

η = c2 exp(F/Eave). (43)

with some constants ci.

Repeating the same with ideal gas gives

η = c3 exp(3F/2Eave), (44)

where Eave is the average energy per particle.

Gibbs distribution

An important basic result is Gibbs distribution: the pro-
bability ρi that the state ψi occurs is

ρi = eβ(F−Ei). (45)

Alternatively, the density matrix is

ρ̂ = eβ(F−Ĥ). (46)

Here the constant β can be interpreted as inverse tem-
perature: β = 1/(kBT ). Here is Boltzmann’s constant
kB = 1.38 × 10−23 J/K, which is needed to express the
temperature T in Kelvin units. The constant F is determi-
ned by the condition (35).

We cite what Richard Feynman says about (46). “This
fundamental law is the summit of statistical mechanics, and
the entire subject is either the slide-down from this summit,
as the principle is applied to various cases, or the climb-
up where the fundamental law is derived and the concepts
of thermal equilibrium and temperature T clarified.” (R.P.
Feynman, Statistical mechanics, a set of lectures, 1972)

The Gibbs distribution can be derived under the fol-
lowing main assumptions: 1) the system we study interacts
with a much larger surroundings called bath. 2) all states
of the whole system (system under study + bath) occur
with equal probability within some energy interval.

system

energy

bath

Neglecting the interaction energy between the system
and the surroundings, the states of the composite system
can be chosen in product form

|Ψi,k〉 = |ψi〉|ψb
k〉 (47)

where |ψb
k〉 is the state of the bath. The total energy of

such a state is Ei,k = Ei + Fk. As all composite states in
the allowed energy range are equally likely, the likelihood
of a given system state |ψi〉 is directly proportional to the
number γ of bath states that it is allowed to couple with.
We assume that for any large bath this is of the form given
in (43) and (44). Because of conservation of the total energy
we have

ρi ∝ γ ∝ eβF ∝ eβ(constant−Ei) ∝ e−βEi . (48)

This gives the claimed exponential distribution (45). The
normalization gives F and the only thing that remains is
to relate β to the absolute temperature. This can be done
by applying the Gibbs distribution to some known thermo-
meter, for example the ideal gas thermometer.

Connection to thermodynamics

The normalization condition Trρ̂ = 1 applied to (48)
gives

F = − 1

β
ln(Tre−βĤ) = − 1

β
ln(
∑
i

e−βEi). (49)

We additionally define the entropy

S = −kB〈ln ρ̂〉 = −kB

∑
i

ρi ln ρi (50)

and internal energy U = 〈Ĥ〉. Show as an exercise that

F = U − ST. (51)

Let us suppose that the Hamiltonian depends on a para-
meter λ: Ĥ(λ). Differentiating the normalization condition
(35) show as an exercise that

dF = −SdT + 〈dĤ
dλ
〉dλ. (52)

Supposing that λ is the volume V of the system and defi-
ning the pressure

p = −〈dĤ
dV
〉, (53)

we get equation (52) into the form

dF = −SdT − pdV. (54)

We recognize that equations (51) and (54) are familiar from
thermodynamics, and an immediate consequence of them
is the first law of thermodynamics

dU = TdS − pdV. (55)

Thus the quantities T , S, U , F etc. can be identified as the
same quantities as defined in thermodynamics.

It is of interest to look at the definition of entropy. Boltz-
mann invented the definition

S = kB lnW (56)
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when the number of microstates is W . Taking the density
matrix (33) as equal weight distribution of W states and
substituting into (50) gives indeed (56). It can be argued
that (50) is the natural generalization of (56) to case when
the availability of some states is restricted. This has also
close connection to information theory, i.e. to the question
of how many bits of information can be coded when the
availability of some values of the bits is limited.

In order to derive thermodynamics, we still need to pro-
ve the second law. For that consider some non-equilibrium
state. For example, consider two independent macroscopic
systems with density matrices ρ1 and ρ2. The composite
system then has the density matrix ρ = ρ1ρ2. The entropy
can be calculated from (50) with the result S = S1 + S2.
The argument is now that if the two subsystems are at dif-
ferent temperatures, S is small compared to the case that
the subsystems could exchange energy so that they would
reach mutual equilibrium (where the temperature would
be the same for both). What this means is that the num-
ber of microscopic states corresponding to the two sub-
systems out of equilibrium is much smaller than the num-
ber of microscopic states in equilibrium. Thus after joining
the subsystems, a nonequilibrium state is highly unlikely
compared to the states in equilibrium so that it practical-
ly does not appear. It is easy to verify (using Lagrange
multipliers) that the Gibbs distribution (46) corresponds
to the maximum of entropy (50) under the constraints of
constant U = 〈Ĥ〉 and (35).

We can also verify the third law. This is straighforward if
the ground state (the lowest energy state) is nondegenerate.
Even for a degenerate ground state, the entropy at T = 0
is small compared to the contributions at T > 0, and thus
can be neglected in comparison.

Usually there is no upper bound for the energy eigenva-
lues Ei. In order to the Gibbs distribution (45) to be rea-
sonable, we must have β > 0, which implies T ≥ 0. This
agrees with our discussion of thermodynamics.

For some systems there is a maximum energy. For
example consider a two-state system or their combinations
(spin systems). In this cases the Gibbs distribution (45) is
reasonable also at negative β, implying negative T accor-
ding to β = 1/(kBT ). Such negative temperature systems
have higher internal energy than the positive temperature
states. Thus negative temperatures can be interpreted to
be higher temperatures that the positive ones.

Variable particle number

Often it is mathematically easier to study case, where
the particle number is not fixed. This can be achieved by
thinking the system as connected to a “particle bath”, an
ideal reservoir of particles at constant energy µ, which is
called the chemical potential. In Gibbs distribution (46) we
can generalize

Ĥ → Ĥ + µN̂b = Ĥ − µN̂ + constant (57)

(because Ntot = N + Nb = constant). (Here N̂ is the
particle-number operator of the system: N̂Ψi = NiΨi, whe-

re Ni is the number of particles in state Ψi.) In making the
substitution (57) one also replaces the constant F (Helm-
holtz free energy) with another constant Ω (grand poten-
tial). Therefore

ρ̂ = eβ(Ω−Ĥ+µN̂). (58)

In the same way as for F , one can derive for Ω the defi-
nition (also nonequilibrium, N = 〈N̂〉)

Ω = U − µN − ST, (59)

the equilibrium expression

Ω = − 1

β
ln
[
Tr e−β(Ĥ−µN̂)

]
= − 1

β
ln

[∑
i

e−β(Ei−µNi)

]
,

(60)
the differential for equilibrium states

dΩ = −SdT − pdV −Ndµ (61)

and the time development

dΩ

dt
≤ 0 (T , V and µ constants). (62)

In addition we deduce from equation (61)

S = −
(
∂Ω

∂T

)
V,µ

, p = −
(
∂Ω

∂V

)
T,µ

, N = −
(
∂Ω

∂µ

)
T,V

.

(63)

Ideal Fermi gas

Above we formally discussed the many-body wave func-
tions Ψi. The calculation of these is possible only in very
special cases. One case is an ideal gas, where we assume
that there are no interactions between the particles.

The natural choice for wave functions of a single free
particle are plane wave states

φk(r) =
1√
V
eik·r, (64)

where the wave vector k appears as a parameter. The ener-
gy of these states is εk = h̄2k2/2m. In order to count the
states, it is most simple to require that the wave functions
are periodic in a cube of volume V = L3, which allows the
wave vectors k (nx, ny and nz integers)

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

. (65)

We suppose that the volume V is very large. Then we can
take the limit V →∞ in quantities that do not essentially
depend on V .

L

L

L

y
x

z
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In addition to the location r, the wave function of a fer-
mion depends on spin index σ, which describes the com-
ponent of spin angular momentum on some chosen z axis.
For spin- 1

2 fermions this can have two values. These can be
denoted by σ = ± 1

2 , or alternatively by ↑ and ↓. For free
particles we can thus choose “spin-up levels”

φk↑(r, σ) =

{
1√
V
eik·r if σ = 1

2

0 if σ = − 1
2

. (66)

and “spin-down levels”

φk↓(r, σ) =

{
0 if σ = 1

2
1√
V
eik·r if σ = − 1

2
. (67)

Note that (following book AM) we call the single-particle
φk↑ and φk↓ “levels” in order to clearly distinguish them
from the “states” Ψi of the many body system.

There are several ways to present many-body states Ψi,
as will be discussed later. One useful way to think of these
states is first to list all levels (66)-(67) in some arbitrary
order, for example

φ0↑, φ0↓, φk1↑, φk1↓, φk2↑, φk2↓, . . . (68)

Then the basis states of the many-body space can be
expressed by telling how many particles is in any of the
levels,

|Ψi〉 = |n1, n2, n3, . . . , n∞〉. (69)

Here nα is the number of particles in the α’th level (68).
[In practice the writing of the state (69) is difficult because
there is an infinite number of levels and thus the great
majority of the numbers nα are zeros.] The energy of the
many-body state (69) is E =

∑
α nαεα. Fermions obey the

Pauli exclusion principle and thus all occupations nα are
either 0 or 1.

In order to determine the thermal equilibrium state, it
is easiest to use the formulas for variable particle number.
Starting from equation (60) we get

e−βΩ = Tr e−β(Ĥ−µN̂)

=
∑
n1

∑
n2

. . . 〈n1, n2, . . . |e−β(Ĥ−µN̂)|n1, n2, . . .〉

=
∑
n1

∑
n2

. . . e−β(ε1−µ)n1e−β(ε2−µ)n2 . . .

=
∑
n1

e−β(ε1−µ)n1

∑
n2

e−β(ε2−µ)n2 . . .

=
∏
α

∑
nα

e−β(εα−µ)nα

=
∏
α

[
1 + e−β(εα−µ)

]
. (70)

Thus

Ω = − 1

β
ln
∏
α

[
1 + e−β(εα−µ)

]
= − 1

β

∑
α

ln
[
1 + e−β(εα−µ)

]
.

(71)

From this we can calculate all thermodynamic quantities.
Especially the particle number (61) is

N = −
(
∂Ω

∂µ

)
T,V

=
1

β

∑
α

e−β(εα−µ)β

1 + e−β(εα−µ)

=
∑
α

1

eβ(εα−µ) + 1
. (72)

Here we see that the average occupation probability of each
level depends on its energy ε and is

f(ε) =
1

eβ(ε−µ) + 1
. (73)

This is the familiar Fermi-Dirac distribution.

In a similar fashion we can derive for an ideal Bose gas
(possible occupation numbers nα = 0, 1, 2, . . . ,∞) the
Bose-Einstein distribution

f(ε) =
1

eβ(ε−µ) − 1
. (74)

The purpose above was to show that ideal Bose and
Fermi distributions can be derived from the more gene-
ral Gibbs distribution, which can be applied to arbitrary
interacting systems as well.

Let us remind about the main features of Fermi distribu-
tion. When the temperature T → 0, the occupation beco-
mes a step function

f(ε) =

{
1 for ε < µ
0 for ε > µ,

(75)

where all levels below the chemical potential µ are filled.
The kinetic energy at highest filled level is called Fermi
energy εF , and expressed in temperature units it is called
Fermi temperature TF : µ(T = 0) = εF = kBTF . We also
define the Fermi wave vector kF and the Fermi momentum
pF = h̄kF corresponding to the Fermi energy, h̄2k2

F /2m =
εF . In momentum space all levels inside (k < kF ) of the
Fermi surface (k = kF ) are occupied, and the ones outside
are empty.
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Equation (72) gives at zero temperature

N = 2
∑
k<kF

1 = 2
4
3πk

3
F

(2π/L)3
,

where the factor 2 comes from spin. From this we get a
relation between the Fermi wave vector and the particle
density,

N

V
=

k3
F

3π2
. (76)
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When T > 0, the occupation f(ε) gets rounded so that
the change from f ≈ 1 to f ≈ 0 takes place in the energy
interval ≈ kBT .

ε

f T = 0

T > 0

0 εF

kBT

Conclusion

This finishes our introduction to thermodynamics and
statistical physics. I hope there has been some new aspect
to your previous knowledge, and that this basic knowledge
would be helpful in further lecture of the Cryocourse.
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