LECTURE 3: Refrigeration

Refrigeration "on-chip"

Thermoelectric refrigeration

Peltier refrigerators, Peltier 1834

Thermionic refrigeration, Mahan, 1994 Korotkov and Likharev, 1999

Quantum-dot refrigerator, Edwards et. al., 1993 Experiment: Prance et al., PRL 102, 146602 (2009).

FIG. 1. (a) Schematic and (b) energy-level diagram of a theoretical design for a quantum-dot refrigerator which could be made using a DDEG in GAAs/AL_Ga.__AS. The reservoir R is cooled to T_0 as its Fermi-Dirac distribution is sharpened by resonant tunneling through quantum dots D_1 and D_2 to the electrodes V_L and V_R . A heat load L can be coupled electronically to R via tunneling.

Dissipation in transport through a barrier - tunneling

Dissipation generated by a tunneling event in a junction biased at voltage V

$$\Delta \boldsymbol{Q} = (\mu_1 \boldsymbol{-} \boldsymbol{E}) \boldsymbol{+} (\boldsymbol{E} \boldsymbol{-} \mu_2) = \mu_1 \boldsymbol{-} \mu_2 = \boldsymbol{e} \boldsymbol{V}$$

 $\Delta Q = T \Delta S$ is first distributed to the electron system, then typically to the lattice by electron-phonon scattering

For average current *I* through the junction, the total average power dissipated is naturally

 $P = (I e) \Delta Q = IV$

Energy current in a tunnel junction

Energy current (from conductor 1)

$$P(V) = \frac{1}{e^2 R_T} \int (E - eV) n_1 (E - eV) n_2(E) [f_1(E - eV) - f_2(E)] dE$$

Compare to: $I(V) = \frac{1}{e^2 R_T} \int eN_1 (E - eV) N_2(E) [f_1(E - eV) - f_2(E)] dE$

For a NIN junction (constant DOSes)

$$P(V) = \frac{1}{e^2 R_T} \int (E - eV) [f(E - eV) - f(E)] dE = -\frac{V^2}{2R_T}$$

= - IV/2

The Joule power is distributed equally between 1 and 2 in this case.

Electronic NIS-coolers

$$P_{\rm NIS} = \frac{1}{e^2 R_T} \int dE (E - eV) n_S(E) [f_N(E - eV) - f_S(E)]$$

Optimum cooling power is reached at $V \cong \Delta/e$:

$$P_{\rm NIS} \approx 0.6 \frac{\Delta^2}{e^2 R_T} (\frac{k_B T_N}{\Delta})^{3/2}$$

Efficiency (coefficient of performance) of a NIS junction cooler:

$$\eta \simeq k_B T / \Delta$$

For reviews, see Giazotto et al., Rev. Mod. Phys. 78, 217 (2006); Muhonen et al., Reports on Progress in Physics 75, 046501 (2012).

SINIS structure

Symmetric back-to-back structure provides equal cooling by the two junctions.

Early experiments

M. Leivo et al., 1996

Large cooling power NIS refrigerators

AI

Large-area (70 X 4 μ m²) photolithographic junctions, cooling power 1 nW at 300 mK Nguyen et al. 2013

More recent NIS coolers

Platform refrigerators

P. Lowell et al., NIST, 2013

H. Nguyen et al., Helsinki, 2015

Two-stage refrigerator, H. Nguyen et al., 2016

Cooling of a superconductor (SIS'IS cooler)

 $\dot{Q} = \frac{1}{e^2 R_T} \int_{-\infty}^{\infty} [f(\boldsymbol{\epsilon}, T_{e2}) - f(\boldsymbol{\epsilon} - eV, T_{e1})]$

 $\times N_2(\epsilon)N_1(\epsilon - eV)\epsilon d\epsilon$

Ti – Al sample $[T_{\rm C}({\rm Ti}) = 0.5 \text{ K}, T_{\rm C}({\rm Al}) = 1.3 \text{ K}]$

COOLING FROM NORMAL TO SUPERCONDUCTING STATE

A. J. Manninen et al., Appl. Phys. Lett. 74, 3020 (1999).

Low temperature limit

SNS proximity Josephson junction is a low-dissipative, unsaturating thermometer at low *T*: lowest T = 20 mK (+/- 10 mK). J. Peltonen et al, unpublished.

Influence of Andreev current on electron cooling

Two-electron tunneling becomes important in transparent junctions. Maisi et al. 2011, 2013

Effective at low bias voltages, dissipation $I_{AR}V$ in N electrode.

εV

(a)

Rajauria et al., 2008

Energy relaxation by magnetic field in coolers

Magnetic field enhanced cooling

Sc aluminium dot in magnetic field

Higher temperatures

O. Quaranta et al., APL 98, 032501 (2011): Cooling Al from 1 K to 0.4 K.

Cooling nanomechanical beams

Cooling phonons as well Koppinen et al PRL 2009 Is e-ph coupling as in bulk? *T*³ instead of *T*⁵? Hekking et al, PRB 2008, Muhonen et al, APL 2009

Schottky barrier cooler

Same working principle as in SINIS, but no oxide barrier needed: S-Sm interface forms a Schottky barrier. $s \sqcap s_m \sqcap s$

10

Thermometer

n++ SOI film

BOX, SiO,

A. Savin et al, APL **79**, 1471 (2001)

AI

(b)

S-Sm cooler

junction

Quantum dot cooler

Tunable NIS refrigerator – "heat transistor"

O. Saira et al., PRL 99, 027203 (2007)

RF NIS-refrigerator

No net charge current, but finite cooling power

JP et al., PRL 98, 037201 (2007); S. Kafanov et al., PRL 103, 120801 (2009)

250nm

 $V_{g,rf}$

4

2

20

(b)

0

0.5

 Q_g/e

(a)_____

SET-cooler

Experimental status of electronic refrigeration

Nahum et al. 1994 *Demonstration of NIS cooling* Leivo et al. 1996 Cooling electrons 300 mK -> 100 mK by SINIS Manninen et al. 1999 Cooling by SIS'IS Manninen et al. 1997, Luukanen et al. 2000 *Lattice refrigeration by SINIS* Savin et al. 2001 S – Schottky – Semiconductor – Schottky – S cooling Clark et al. 2005, Miller et al. 2008 x-ray detector refrigerated by SINIS Prance et al. 2009 Electronic refrigeration of a 2DEG Kafanov et al. 2009 *RF-refrigeration* Quaranta et al 2011 Cooling from 1 K to 0.4 K Lowell et al. 2013 Macroscopic NIS refrigerator Nguyen et al 2013 Cooling power up to 1 nW Nguyen et al. 2016 Cascade refrigerator

For reviews, see Rev. Mod. Phys. 78, 217 (2006); Reports on Progress in Physics 75, 046501 (2012).

Refrigeration of a "bulk" object

A. Clark et al., Appl. Phys. Lett. 86, 173508 (2005).