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Optomechanical Arrays

Topological Phases of Sound (and Light)

Cavity Optomechanics 

Artificial magnetic fields for photons



Optomechanical Hamiltonian

optical
cavity mechanical

mode
laser

Review “Cavity Optomechanics”: 
M. Aspelmeyer, T. Kippenberg, FM
Rev. Mod. Phys. 86, 1391 (2014)



Optomechanical Hamiltonian

optical
cavity mechanical

mode
laser

laser detuning optomech.
coupling

Review “Cavity Optomechanics”: 
M. Aspelmeyer, T. Kippenberg, FM
Rev. Mod. Phys. 2014



Converting photons into phonons

photon



Converting photons into phonons

phonon



“Linearized” Optomechanical Hamiltonian

bare optomechanical coupling
(geometry, etc.: fixed!)

“laser-enhanced
optomechanical coupling”: g = g0↵

tuneable! phase!

↵
laser-driven

cavity amplitude

~g0â†â(b̂+ b̂†)

~g0(↵�â† + ↵⇤�â)(b̂+ b̂†)

â = ↵+ �â



Optomechanical Arrays

Topological Phases of Sound (and Light)

Cavity Optomechanics 

Artificial magnetic fields for photons



optical
mode

mechanical
mode

Single-mode optomechanics

✓displacement sensing
✓cooling
✓strong coupling
✓self-oscillations (limit cycles)

g



Many modes

optical
mode

mechanical
mode



First realizations

Lipson group, Cornell arXiv:1505.02009 (synchronization)

20µm



= free-standing photonic crystal structures (Painter group)

Optomechanical crystals

advantages:
tight vibrational confinement:
high frequencies, small mass 
(stronger quantum effects)

tight optical confinement: 
large optomechanical 
coupling
(100 GHz/nm)

integrated on a chip

localized optical and 
vibrational (GHz) mode

Safavi-Naeini et al PRL 2014 

2 µm

Eichenfield et al Nature 2009 



Optomechanical arrays

Optomechanical array: Many 
coupled optomechanical cells

laser drive

optical mode mechanical mode

Possible design based on “snowflake” 2D optomechanical crystal (Painter 
group), here: with suitable defects forming a superlattice (array of cells)



Modeling an optomechanical array

Quantum many-body dynamics in optomechanical arrays

Max Ludwig1, � and Florian Marquardt1, 2

1Institute for Theoretical Physics, Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
2Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Bau 24, 91058 Erlangen, Germany

We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical sys-
tems. At each site of such an array, a localized mechanical mode interacts with a laser-driven cavity
mode via radiation pressure, and both photons and phonons can hop between neighboring sites.
The competition between coherent interaction and dissipation gives rise to a rich phase diagram
characterizing the optical and mechanical many-body states. For weak intercellular coupling, the
mechanical motion at di�erent sites is incoherent due to the influence of quantum noise. When
increasing the coupling strength, however, we observe a phase transition towards a regime of phase-
coherent mechanical oscillations. This transition and the phase diagram of the system are studied
using a Gutzwiller ansatz for the dynamics of the driven-dissipative system.

Introduction. - Recent experimental progress has
brought optomechanical systems into the quantum
regime: A single mechanical mode interacting with a
laser-driven cavity field has been cooled to the ground
state [1, 2]. Several of these setups, in particular op-
tomechanical crystals, o⇤er the potential to be scaled up
to form optomechanical arrays. Applications of such ar-
rays for quantum information processing [3, 4] have been
proposed lately. Given these developments, one is led
to explore quantum many-body e⇤ects in optomechani-
cal arrays. In this work, we analyze the nonlinear photon
and phonon dynamics in a homogeneous two-dimensional
optomechanical array. In contrast to earlier works [3–6],
here we study the array’s quantum dynamics beyond a
quadratic Hamiltonian. To tackle the non-equilibrium
many-body problem of this nonlinear dissipative system,
we employ a mean-field approach for the collective dy-
namics. First, we discuss photon statistics in the array,
in particular how the photon blockade e⇤ect [7] is al-
tered in the presence of intercellular coupling. The main
part of the article focusses on the transition of the collec-
tive mechanical motion from an incoherent state (due to
quantum noise) to an ordered state with phase-coherent
mechanical oscillations. For these dynamics, the dissipa-
tive e⇤ects induced by the optical modes play a crucial
role. On the one hand, they allow the mechanical modes
to settle into self-induced oscillations [8–15] once the op-
tomechanical amplification rate exceeds the intrinsic me-
chanical damping, see Fig. 1(b). On the other hand,
the fundamental quantum noise (e.g. cavity shot noise)
di⇤uses the mechanical phases and prevents the mechan-
ical modes from synchronizing. This interplay leads to
an elaborate phase diagram characterizing the transition.
To gain further insight, we develop a semiclassical model
describing the coupling of the mechanical phases and the
influence of quantum noise.

While true long-range order is prohibited for a
two-dimensional system with continuous symmetry,
a Beresinskii-Kosterlitz-Thouless transition towards a
state with quasi-long range order is possible. The ordered
mechanical phase thus resembles the superfluid phase in

mechanical mode

optical mode

intercellular coupling

b

driving strength

a

Figure 1. (a) Optomechanical array with localized mechani-
cal (b̂j) and laser-driven optical modes (âj) at each site. The
optical and mechanical coupling between neighboring sites is
set by J and K, respectively. (b) Onset of self-induced oscil-
lations for an isolated mechanical mode as a function of laser
driving strength (schematic). The classical dynamics (black
solid line) show a bifurcation. Quantum fluctuations blur the
transition (dashed blue line) and generate a mechanical state
whose phase is completely undetermined, see also Fig. 3(b).

two dimensional cold atomic gases [16] or Josephson junc-
tion arrays [17]. Notably, optomechanical arrays com-
bine the tunability of optical systems with the robustness
and durability of an integrated solid-state device. Other
driven dissipative systems that have been studied with
regard to phase transitions recently include cold atomic
gases [18–23], nonlinear cavity arrays [24, 25] and opti-
cal fibres [26]. In a very recent work and along the lines
of [18], the preparation of long-range order for photonic
modes was proposed using the linear dissipative e⇤ects
in an optomechanical array [6]. Our work adds the novel
aspect of a mechanical phase transition to the studies of
driven dissipative many-body systems.
Model. - We study the collective quantum dynamics of

a two-dimensional homogeneous array of optomechanical
cells (Fig. 1). Each of these cells consists of a mechanical
mode and a laser driven optical mode that interact via
the radiation pressure coupling at a rate g0 (~ = 1):

Ĥom,j = ��â†j âj +⇥b̂†j b̂j �g0(b̂
†
j + b̂j)â

†
j âj +�L(â

†
j + âj).

(1)
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each cell: optomech. interaction laser drive

Tight-binding model for photons & 
phonons hopping and interacting on 
a lattice

2

The mechanical mode (b̂j) is characterized by a frequency
⇤. The cavity mode (âj) is transformed into the frame
rotating at the laser frequency (⇥ = ⇧laser � ⇧cav) and
driven at the rate �L. In the most general case, both
photons and phonons can tunnel between neighboring
sites ⌃ij⌥ at rates J/z and K/z, where z denotes the
coordination number. The full Hamiltonian of the array
is given by Ĥ =

⇤
j Ĥom,j + Ĥint, with

Ĥint = �J

z

⌅

⇥i,j⇤

�
â†i âj + âiâ

†
j

⇥
� K

z

⌅

⇥i,j⇤

�
b̂†i b̂j + b̂ib̂

†
j

⇥
.(2)

To bring this many-body problem into a treatable form,
we apply the Gutzwiller ansatz Â†

i Âj ⇥ ⌃Â†
i ⌥Âj +

Â†
i ⌃Âj⌥ � ⌃Â†

i ⌥⌃Âj⌥ to Eq. (2). The accuracy of this ap-
proximation improves if the number of neighboring sites z
increases. For identical cells, the index j can be dropped
and the Hamiltonian reduces to a sum of independent
contributions, each of which is described by

Ĥmf = Ĥom � J
�
â†⌃â⌥+ â⌃â†⌥

⇥
�K

�
b̂†⌃b̂⌥+ b̂⌃b̂†⌥

⇥
.(3)

Hence, a Lindblad master equation for the single cell den-
sity matrix ⇤̂, d⇤̂/dt = �i[Ĥmf , ⇤̂] + ⇥D[â]⇤̂+ �D[b̂]⇤̂ can
be employed. The Lindblad terms D[Â]⇤̂ = Â⇤̂Â† �
1
2 Â

†Â⇤̂ � 1
2 ⇤̂Â

†Â take into account photon decay at a
rate ⇥ and mechanical dissipation (here assumed due to
a zero temperature bath) at a rate �.

Photon statistics. - Recently, it was shown that the ef-
fect of photon blockade [7] can appear in a single optome-
chanical cell: The interaction with the mechanical mode
induces an e⌅ective nonlinearity for the photon field of
strength g20/⇤ [7, 27]. Hence, the presence of a single
photon can hinder other photons from entering the cav-
ity. To observe this e⌅ect, the nonlinearity must be com-
parable to the cavity decay rate, i.e. g20/⇤ & ⇥, and the
laser drive weak (�L ⇤ ⇥) [7, 28].

To study nonclassical e⌅ects in the photon statistics,
we analyze the steady-state photon correlation function
g(2)(⌅) = ⌃â†(t)â†(t+ ⌅)â(t+ ⌅)â(t)⌥/⌃â(t)†â(t)⌥2 [29] at
equal times (⌅ = 0), with g(2)(0) = 1 for a coherent state,
and g(2)(0) < 1 (> 1) indicating anti-bunching (bunch-
ing). Here (Fig. 2), we probe the influence of the collec-
tive dynamics by varying the optical coupling strength J ,
while keeping the mechanical coupling K zero for clarity.
We note that, when increasing J , the optical resonance
e⌅ectively shifts: ⇥ ⌅ ⇥ + J . To keep the photon
number fixed while increasing J , the detuning has to be
adapted [30]. In this setting, we observe that the inter-
action between the cells suppresses anti-bunching (inset
of Fig. 2). Photon blockade is lost if the intercellular
coupling becomes larger than the e⌅ective nonlinearity,
2J & g20/⇤. Above this value, the photon statistics shows
bunching, and ultimately reaches Poissonian statistics for
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Figure 2. Loss of photon blockade for increasing optical cou-
pling in an array of optomechanical cavities. The equal time
photon correlation function shows anti-bunching (g(2)(0) < 1)
and bunching (g(2)(0) > 1) as a function of detuning ⇥ and
optical coupling strength J . The smallest values of g(2)(0)
are found for a detuning ⇥0 = �g20/⇤. When increasing the
coupling J while keeping the intracavity photon number con-
stant, i.e. along the dashed line, photon blockade is lost (inset,
g(2)(0) as black solid line). For a smaller driving power (inset,
blue solid line, �L = 5 · 10�5⇥), anti-bunching is more pro-
nounced, and the behavior is comparable to that of a nonlin-
ear cavity (inset, dashed line). The hatched area in the main
figure outlines a region where a transition towards coherent
mechanical oscillations has set in (see main text and further
figures). ⇥ = 0.3⇤, �L = 0.65⇥, g0 = 0.5⇤, � = 0.074⇤.

large couplings. Similar physics has recently been ana-
lyzed for coupled qubit-cavity arrays, [30]. For very large
coupling strengths, though, the density plot of Fig. 2 re-
veals signs of the collective mechanical motion (hatched
area). There we observe the correlation function to os-
cillate (at the mechanical frequency) and to show strong
bunching. We will now investigate this e⌅ect.

Collective mechanical quantum e�ects. - To describe
the collective mechanical motion of the array, we focus
on the case of purely mechanical intercellular coupling
(K > 0, J = 0) for simplicity. Note, though, that the
e⌅ect is also observable for optically coupled arrays, as
discussed above.

As our main result, Figs. 3(a)and 4(a) show the
sharp transition between incoherent self-oscillations and
a phase-coherent collective mechanical state as a function
of both laser detuning ⇥ and coupling strength K: In the
regime of self-induced oscillations, the phonon number
⌃b̂†b̂⌥ reaches a finite value. Yet, the expectation value
⌃b̂⌥ remains small and constant in time. When increas-
ing the intercellular coupling, though, ⌃b̂⌥ suddenly starts
oscillating:

⌃b̂⌥(t) = b̄+ re�i�eff t. (4)

Our more detailed analysis (see below) indicates that

optical coupling
(photon tunneling)

mechanical coupling
(phonon tunneling)

J K

Max Ludwig, FM, Phys. Rev. Lett. 111, 073602 (2013)

laser detuning
� = !L � !

opt



Optomechanical Arrays

conceptually simple: one material, with holes

global view: 
light-tunable metamaterial for photons & phonons

similar in spirit:
optical lattices
nonlinear optical materials



Photons and phonons on a lattice

5

0

-5
-5 0 5

5

0

-5
-5 0 5

Tuneable bandstructure for 
photon-phonon polaritons,

Dirac-type dispersion
Synchronization,
nonequilibrium phase 
transitions driven by 
quantum noise

Ludwig, FM, 
Phys. Rev. Lett. 111, 073602 (2013)

Heinrich et al., Phys. Rev. Lett. 2011

Schmidt, Peano, FM, New J. Phys. 2015
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Topological Materials

Topological properties: 
robust against smooth changes!

Möbius strip knots

n-fold torus

superfluid
vortex Images: Wikipedia



Topological Materials

Quantum Hall Effect (Chern number = conductance)

2D topological insulators, e.g. HgTe
3D topological insulators, e.g. BiSe

Topological Insulators:

Other than electronic systems?
Proposals/first experiments for:
atoms, ions, photons, magnons

Waves can show topological robustness!
review: Hasan, Kane RMP 2010

cold atoms experiment: G. Jotzu et al. (Esslinger group), Nature 2014
photons:

Khanikaev,...,Shvets, Nature Materials 2012
Rechtsman, ..., Szameit Nature 2013

Mittal, .... , Hafezi PRL 2014
...

We calculate the edge band structure by using a unit cell that is
periodic in the x direction but finite in the y direction, ending with two
‘zig-zag’ edges (infinite in the x direction). The zig-zag edge is one of
three typical edge terminations of the honeycomb lattice; the other two
are the ‘armchair edge’ and the ‘bearded edge’. Note that the presence
of chiral edge states can be derived using the bulk–edge correspond-
ence principle by calculating the Chern number4,5,17,29. In our sample
(see Fig. 1a), the top and bottom edges are zig-zag edges and the right
and left edges are armchair edges. The band structure of the zig-zag
edge is presented in Fig. 2a for the case where the waveguides are not
helical (R5 0). There are two sets of states, one per edge. Their disper-
sion curves are flat and completely coincide (that is, they are degenerate
with one another), residing between kx5 2p/3a and kx5 4p/3a, occu-
pying one-third of kx space, where a5 15

ffiffiffi
3

p
mm is the lattice constant.

The Floquet band structure when the lattice is helical with R5 8mm is
shown in Fig. 2b. Here, the edge states are no longer degenerate, but
now have opposite slopes. Specifically, the transverse group velocity

(i.e., the group velocity in the (x–y) plane) on the top edge is now
directed to the right, and on the bottom edge to the left, corresponding
to clockwise circulations.However, there are no edge stateswhatsoever
circulating in the anti-clockwise direction. Hence, the edge states pre-
sented in Fig. 2b are the topologically protected edge states of a Floquet
topological insulator. The lack of a counter-propagating edge state on a
given edge directly implies that any edge-defect (or disorder) cannot
backscatter, as there is no backwards-propagating state available into
which to scatter, contrary to the case of R5 0, where there aremultiple
states into which scattering is possible. This is the essence of why topo-
logical protection occurs. The transverse group velocity (for brevity, we
henceforth drop ‘transverse’) of these edge states has a non-trivial
dependence on the helix radius, R. For small R, the group velocity of
the edge states increases, but eventually it reaches a maximum and
decreases again. Before the group velocity crosses zero, the Chern
number is calculated to be21 (indicating the presence of a clockwise
edge state, as seen in Fig. 2b). However, after the group velocity crosses

kx
ky

Bandgap

b

c d

a
15 15 μm

x

y

kx
ky

Figure 1 | Geometry and band structure of honeycomb photonic Floquet
topological insulator lattice. a, Microscope image of the input facet of the
photonic lattice, showing honeycomb geometry with ‘zig-zag’ edge
terminations on the top and bottom, and ‘armchair’ terminations on the left
and right sides. Scale bar at top right, 15mm. The yellow ellipse indicates the
position and shape of the input beam to this lattice. b, Sketch of the helical
waveguides. Their rotation axis is in the z direction, with radius R and period

Z. c, Band structure (b versus (kx, ky)) for the case of non-helical waveguides
comprising a honeycomb lattice (R5 0). Note the band crossings at the Dirac
point. d, Bulk band structure for the photonic topological insulator: helical
waveguides with R5 8mm arranged in a honeycomb lattice. Note the bandgap
opening up at the Dirac points (labelled with the red, double-ended arrow),
which corresponds to the bandgap in a Floquet topological insulator.
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Figure 2 | Dispersion curves of the edge states, highlighting the unique
dispersion properties of the topologically protected edge states for helical
waveguides in the honeycomb lattice. a, Band structure of the edge states on the
top and bottom of the array when the waveguides are straight (R50). The
dispersion of both top and bottom edge states (red and green curves) is flat,
therefore they have zero group velocity. The bands of the bulk honeycomb lattice

aredrawn inblack.b,Dispersioncurves of the edge states in theFloquet topological
insulator for helical waveguides with R58mm: the band gap is open and the edge
states acquire non-zero group velocity. These edge states reside strictly within the
bulk band gap of the bulk lattice (drawn in black). c, Group velocity (slope of green
and red curves) versus helix radius, R, of the helical waveguides comprising the
honeycomb lattice. The maximum occurs at R510.3mm.

LETTER RESEARCH
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Macmillan Publishers Limited. All rights reserved©2013

magnons: Zhang et al. 2013, Shindou et al 2013, Romhanyi et al 2015, ...

http://www.nature.com/nature/journal/v515/n7526/full/nature13915.html
http://www.nature.com/nature/journal/v515/n7526/full/nature13915.html
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Topological Bandstructures

Brillouin zone

k
x

ky

path in parameter space
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change of wave function

 
A(~k)

B(~k)

!
· ei~k~r

Berry phase = area / 2



Topological Bandstructures

Chern number = (sum of Berry phases across Brillouin zone)/2π

k
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ky

Chern number = integer! topologically robust!
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Edge States

Chern=0 Chern=1

Chiral Edge State

‘trivial’ band
insulator

topologically 
nontrivial band

insulator
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Phonon Topological Materials

What about topological transport of phonons?



Phonon Topological Materials

What about topological transport of phonons?

Why?
Transport of sound waves
protected against backscattering

One-way heat transport

T4 T1

Reconfigure channels on-the-fly

T3 T2



Phonon Topological Materials

What about topological transport of phonons?

Engineer non-reciprocal phases for phonon transport!



Phonon Topological Materials

What about topological transport of phonons?

Engineer non-reciprocal phases for phonon transport!
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Topological Phases of Sound and Light

Need:

Dielectric
(with the right 
pattern of holes)

One Laser
(with the right 
pattern of phases)

What about topological transport of phonons?



Gauge fields for phonons

photons

phonons

first such scheme: “phonon circulator”, 
Habraken, Stannigel, Lukin, Zoller, and Rabl, New Journal of Physics, 14, 115004 (2012)

(works best for phonons, due to K<<J)

J

K

g gei�



Creating an optical phase pattern

(optical
phase)



Creating an optical phase pattern

(optical
phase)

Optical vorticity!



Creating an optical phase pattern

(optical
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Creating an optical phase pattern

Kagome 
lattice



Creating an optical phase pattern



One triangular unit cell

ei2�/3

a b

optical defect mode
mechanical defect mode
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Topological Phases of Sound and Light 
in an Optomechanical Array

Kagome Optomechanical Array

ei2�/3

a b

optical defect mode
mechanical defect mode

defect
�
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e�i2�/3

1

A

B C
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2� 2�

laser-field with different 
phases on sites A,B,C

see Koch, Houck, LeHur, Girvin PRA 2010 for Kagome lattice in circuit QED



Topological Phases of Sound and Light 
in an Optomechanical Array
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Vittorio Peano, Christian Brendel, Michael Schmidt, and Florian Marquardt, 
Phys. Rev. X 2015



Topological Phases of Sound and Light 
in an Optomechanical Array
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Band Structure

Vittorio Peano, Christian Brendel, Michael Schmidt, and Florian Marquardt, 
Phys. Rev. X 2015
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Topological Phases of Sound and Light 
in an Optomechanical Array
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Robust chiral transport of phonons

phonon transmission probability
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Features

• Topologically protected transport of phonons in 
the solid state
compare... circulating fluid flow

Alu group 2014/2015 [expt]
Yang,...,Zhang 2015

coupled pendula
Süssstrunk, Huber 2015 [expt]

coupled gyroscopes
Irvine group 2015 [expt]



Features

T2T1

• Topologically protected transport of phonons in 
the solid state

• Here: nanostructure, tuneable
• Full optical control and readout
• Arbitrary domains
• study one-way 

phonon transport
• Photon/phonon polariton transport
• Time-dependent control: quenches



Challenges

fabrication disorder: current 1% 
– need to reduce by factor 100 (postprocessing)

intensity requirement: ca. 105-106 circulating photons
– OK, but large (optimize, improve coupling g0)

Challenges (for optomechanical crystals)



Text

J. Cohen @ O. Painter lab (Caltech)



Optomechanical Arrays

Topological Phases of Sound (and Light)

Cavity Optomechanics 

Artificial magnetic fields for photons



Artificial magnetic fields for photons

Need:

Dielectric
(with the right 
pattern of holes)

Two Lasers
(with the right 
pattern of phases)



Phonon-assisted photon tunneling

link
mode 1 mode 2

mechanical
vibration

vibration leads to modulation of 
effective photon tunnel coupling 
between mode 1 and 2

non-reciprocal phase!



Artificial magnetic fields for photons

M. Schmidt, S. Keßler, V. Peano, 
O. Painter, F. Marquardt
Optica 2015
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arbitrary optical re-
configuration of magnetic 
field distribution



“Can these magnetic fields also
become time-dependent?”

Yes, of course

“But can they have their own
dynamics?”

Let’s see...



blue-detuned laser:
anti-damping!

Nonlinear Dynamics



Nonlinear Dynamics

�



Nonlinear Dynamics

Instability!    (beyond some laser power)

Amplitude A

x

t

Self-sustained mechanical oscillations!
Phase�

“Limit cycle”



Phonon-assisted photon tunneling

link
mode 1 mode 2

mechanical
vibration

vibration leads to modulation of 
effective photon tunnel coupling 
between mode 1 and 2

non-reciprocal phase!

(limit-cycle)

(dynamical, depends on mechanical evolution)



Dynamics?

Dynamical Gauge Fields

Mechanical Oscillation Phases=
Vector potential for photons

Flux = Sum of oscillation phases

� =

Z
~Ad~s

�



Dynamics?

Dynamical Gauge Fields

Mechanical Oscillation Phases=
Vector potential for photons

Flux = Sum of oscillation phases
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FIG. 2. (color online). a) Dynamical regimes of the flux �. Phase diagram as a function of mechanical amplitude and laser drive (which is
resonant on site 1, !d = ⌫1) showing four regimes for the flux dynamics. In regimes I and II the flux � is stationary and tends to a value equal
to ⇡/2 or different from it, respectively. In regimes III and IV the flux � is dynamical and can either show a periodic oscillatory or chaotic
behavior, respectively. b) and c) Cuts along the red dashed lines in a) across the phase transition from regime I to II. d) and e) Examples of
phase space trajectories �(t)� �̇(t) in region III and IV. f) Bifurcation diagram for the flux dynamics. We display the values of �(t) attained
at the zero-crossings of �̇(t). For the bifurcation diagram f) we used a higher resolution for values of B

p
J/E than for the phase diagram a).

Three-site model.— First, we study the case of three sites.
The resulting effective model for photons aj on sites j 2
{1, 2, 3} and phonons bl on links l 2 {12, 23, 13} is depicted
in Fig. 1 a), where we define a4 = a1. For definiteness, we
will assume ⌫1 < ⌫2 < ⌫3. For three sites, the gauge freedom
implies that only the gauge invariant flux

� = �13 + �21 + �32 ,

i.e., the sum of phases around the triangular plaquette, affects
the dynamics of the photons. We want to mention that in the
regime where the phonons are not influenced by the photons
(� = const.) the Hamiltonian for the three-site model can
be diagonalized and the setup can act (for � = ±⇡/2) as a
photon circulator [20]. In the intriguing case where the pho-
tons interact with the phonons we discuss the driven and dis-
sipative setting and furthermore choose equal tunneling am-
plitudes Jl = J and mechanical amplitudes Bl = B. As an
example we consider a resonant drive on site j = 1. With-
out drive and dissipation the dynamics only depends on the
ratio A/B. As a consequence, for the driven case, the four
parameters involved (E, , B, J), can be combined into just
two dimensionless parameters, B

p
J/E and JE/2. The

resulting “phase diagram” for the flux dynamics as a func-
tion of these two parameters is displayed in Fig. 2 a). It has
been obtained from direct numerical simulations and reveals
four distinct regimes. In regimes I and II the flux �(t) (after
some transient behavior) approaches a stationary value of ei-
ther �(t ! 1) = ⇡/2 or different from it, respectively. In
regimes III and IV, the flux �(t) is not stationary but even in
the long-time limit shows a dynamical behavior. Most inter-
estingly, the flux dynamics �(t) in these regimes can either
show periodic or chaotic behavior, region III and IV in Fig. 2
a), respectively. Figures 2 b) and c) show cuts along the red
dashed lines marked in the phase diagram, indicating a con-

tinuous phase transition from phase I to II. In Fig. 2 d) and
e), we show two examples of the phase space �(t) � �̇(t) in
regimes III and IV. Already at this level we can distinguish
periodic [Fig. 2 d)] from chaotic [Fig. 2 e)] dynamics. A more
involved characterization can be done using a bifurcation di-
agram. To this end, we show the value of �(t) evaluated at
the zero crossings of �̇(t), in the long-time limit, as a func-
tion the mechanical amplitude B in Fig. 2 f). This bifurcation
diagram allows us to distinguish the periodic from the chaotic
flux dynamics within the whole phase diagram for �(t). In
addition, we also checked whether the Fourier transform of
the trajectories shows a clear peak or is flat, indicating peri-
odic or chaotic behavior, respectively (see Supplemental Ma-
terial [52]). In the regime of fast photons dynamics (com-
pared to the phonon dynamics), we are able to apply a Born-
Oppenheimer approximation and adiabatically eliminate the
photons. To be more precise, we solve dai/dt = 0 where
ȧj =

⇥
�i(⌫j � !d) � 

2

⇤
aj�iEj�iJB

P
k 6=j e�i�jkak and

use this instantaneous solution to eliminate ai from the equa-
tions of motion for �ij (see Supplemental Material [52]). In
the case of a resonant drive on site j = 1, this approximation
leads to the following equation of motion for the flux:

�̇ =
16E2

JB3

(4 + 2

J2B2 ) cos(�)
2

J2B2 [12 + 2

J2B2 ]2 + [16 cos(�)]2
. (7)

From Eq. (7) we find �(t ! 1) = ⇡/2 which shows very
good agreement with the exact numerical long-time dynam-
ics in regime I. This approach fails in the other regimes since
there we are not able to adiabatically eliminate the photons.
We also want to mention that both � = +⇡/2 and � = �⇡/2
are fixed points of Eq. (7). It turns out that for a resonant
drive on site j = 1, � = �⇡/2 is an unstable fixed point of
Eq. (7). The asymmetry between +⇡/2 and �⇡/2 is due to

Chaos

Periodic Fixed point

Fixed point

Dynamics of the
flux, for a triangle

S. Walter and FM, 
arXiv:1510.06754 

� =

Z
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Dynamical Gauge Fields

4

the breaking of translational invariance, necessarily produced
by the link directions. In contrast, a resonant drive on site
j = 2 (3) would have � = �⇡/2 (+⇡/2) as a stable fixed
point. From Eq. (7) we also can estimate the rate � at which
the flux �(t) settles into steady state. By linearizing around
the fixed point we find � = [16E2(4 + ⇠)]/[JB3⇠(12 + ⇠)2)]
where ⇠ = (/JB)2.
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FIG. 3. (color online). a) Evolution of the light field on a lattice with
a dynamical gauge field of vibrational origin. Light intensity A2

i,j on
each site (top row) and flux � per plaquette (bottom row) at different
times. The resonant drive is on the site on the corner and the initial
flux per plaquette is � = ⇡/2. No steady state of either photons or
phonons is reached. We chose B

p
J/E = 3.16, JE/2 = 10 and

have 1/ = 1/J . The simulations were carried out on a 21 ⇥ 21
triangular lattice, where only the left half is shown. b) Schematics
of the flux and light field dynamics for the very first moments of
the time evolution. Initially � = 0 for every plaquette and a single
optical site is driven (green arrow). A finite optical amplitude on
neighboring sites changes the mechanical phases, indicated by the
black arrows. The number of arrowheads indicates the magnitude
of decrease. The link directions lead to a negative (positive) flux
through the left (right) plaquette next to the illuminated site. The
direction of light transport is indicated by the green arrows.

Lattices.— We extend the three-site model to two-
dimensional lattices and illustrate the dynamical behaviour on
a triangular lattice, cf. Fig. 1 c). Going from three sites to a
lattice, a significant new feature comes into play: the artificial
dynamical magnetic field produced by the phonons can now
exert a Lorentz force that bends the path of any light-beam
propagating in the array. Therefore, we end up with a dynam-
ical interplay where the flow of the photons changes the spatial
distribution of the magnetic flux density which then acts back
on the dynamics of the light field. We choose a scenario with
the link directions as depicted in Fig. 1 c). We note that this is
not the only possible choice. In fact the intricate photon and
phonon dynamics depends on the link pattern. We illustrate
the nonlinear structure formation in this model for the case
of having only a single site illuminated by a laser. In Fig. 3
a) we show the temporal evolution of the light intensity (top
row) as well as the magnetic field (bottom row) on the lattice.
At first the photons experience a static magnetic field which
is set by the initial phases of the mechanical oscillations (here
chosen such that the initial flux is � = ⇡/2) and start to move
along the edge. Due to the back-action of the photons (which
primarily move along the edge) on the phonons, the flux per

plaquette changes. This in turn leads to a reconfiguration of
the magnetic field which in this scenario forces the photons to
reverse their direction of motion. Here, the system does not
reach a steady state even in the long-time limit. Even though
the photons live only for a short time 1/ before escaping the
structure, the system develops a spatial “memory” in the form
of the mechanical oscillation phases, where previous photons
leave their imprint.

For an intuitive description of the dynamics we assume zero
initial flux per plaquette � = 0, a large optical damping 
compared to the tunneling J , and a drive on one optical site on
the top edge of the lattice. For this scenario, we show in Fig. 3
b) a schematics of the flux and light field dynamics and focus
on the fluxes through the gray plaquettes for the very first mo-
ments of time evolution. As soon as the optical amplitudes of
two neighboring optical sites is nonzero, the mechanical oscil-
lation phase on the corresponding link will change, cf. Eq. (2).
More precisely, the phases on the links decrease, indicated by
the black arrows where the number of arrowheads indicate the
magnitude of decrease. However, from the way these phases
enter the photon dynamics, one can deduce that each phase
contributes to the flux inside a plaquette with a positive sign
only if the respective link is traversed in the positive direc-
tion when going around the plaquette counterclockwise. This
leads to the signs shown in the figure. The light propagation
due to the magnetic field is indicated by the green arrows. It
is worth mentioning that even in the long-time limit the me-
chanical oscillation phases continue drifting because even an
arbitrarily small but finite optical amplitude on neighboring
sites is enough to change the phases, albeit very slowly. With
such a scenario one could imagine to engineer a desired mag-
netic field pattern by means of an optical drive.

Conclusion.— We have shown that dynamical gauge fields
in optomechanical arrays arise quite naturally. The evolving
mechanical oscillation phases, which respond to the flow of
the photons, represent a dynamical gauge field for the lat-
ter. Already the three-site model shows intriguing dynamics
which leads to a rather complex phase diagram for the flux
dynamics. With experiments pushing towards multi-mode op-
tomechanical setups, the three-site model seems feasible to be
realized in the near future and would pave the way for fur-
ther studies of dynamical gauge fields in optomechanical ar-
rays. Collective behavior such as synchronization and pat-
tern formation of mechanical limit-cycle oscillators have re-
cently been studied in optomechanical arrays [58–60]. In this
spirit, further studies on gauge field dynamics in optomechan-
ics could address questions on synchronization and dynamical
pattern formation of the magnetic field.
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