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Observation of Gravitational Waves

properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Optomechanical Hamiltonian
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Review “Cavity Optomechanics”: 
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Optomechanical Hamiltonian

...any dielectric moving inside a cavity 
generates an optomechanical interaction!



A bit of  history



First cavity optomechanics experiments

microwave cavity

mechanical resonator

optomechanical change of 
mechanical damping rate

Braginsky, Manukin, 
Tikhonov JETP 1970



First cavity optomechanics experiments
fixed mirror

cantileverinput laser

oscillating mirror

radiation

pressure

Frad

x

x

Vrad(x)

Veff = Vrad + VHO

Frad(x) = 2I(x)/c
λ

2F λ/2

Static behaviour

A. Dorsel, J. D. McCullen, P. Meystre,
E. Vignes and H. Walther:

Experimental proof of static bistability:

Phys. Rev. Lett. 51, 1550 (1983)

hysteresis

force vs. mirror position

Static bistability in an optical cavity experiment
Dorsel, McCullen, Meystre, Vignes, Walther PRL 1983



A zoo of  devices
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cold atoms
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The zoo of optomechanical systems 
(2005-now)



The zoo of optomechanical systems



The zoo of optomechanical systems



Why?



2

FIG. 1: Overview of the accelerometer design. a, Canonical example of an accelerometer. When the device (blue frame) experiences a
constant acceleration a, a test mass m undergoes a displacement of x = ma/k. b, Frequency response |�(⇧)| of an accelerometer on a log-log
plot featuring a resonance at fm =

�
k/m/2⌅ with Qm = 10. c, False-colored SEM-image of a typical optomechanical accelerometer. A test

mass of size 150 µm⇥60 µm⇥400 nm (green) is suspended on highly stressed 150 nm wide and 560 µm long SiN nano-tethers, which allow
for high oscillator frequencies (> 27 kHz) and high mechanical Q-factors (> 106). On the upper edge of the test mass, we implement a zipper
photonic crystal nanocavity (pink). The cross-shaped cuts on the test mass facilitate undercutting the device. d, Zoom-in of the optical cavity
region showing the magnitude of the electric field |E(r)| for the fundamental bonded mode of the zipper cavity. The top beam is mechanically
anchored to the bulk SiN and the bottom beam is attached to the test mass. e, Schematic displacement profile (not to scale) of the fundamental
in-plane mechanical mode used for acceleration sensing. f, SEM-image of an array of devices with different test mass sizes.

(1�2⇥106), and strong thermo-optomechanical back-action
to damp and cool the thermal motion of the test mass.

Figure 1c shows a scanning-electron microscope image
of the device studied here, with the test mass structure and
nano-tethers highlighted in green. The fundamental in-plane
mechanical mode of this structure is depicted in Fig. 1e
and is measured to have a frequency of fm = 27.5 kHz, in
good agreement with finite-element-method simulations from
which we also extract a motional mass of m = 10⇥10�12 kg.
The measured mechanical Q-factor is Qm = 1.4⇥106 in vac-
uum (see appendix G), which results in an estimated ath =
1.4 µg/

⌥
Hz. The region highlighted in pink corresponds to

the zipper optical cavity used for monitoring test mass mo-
tion, a zoom-in of which can be seen in Figure 1d. The cav-
ity consists of two patterned photonic crystal nanobeams, one
attached to the test mass (bottom) and one anchored to the
bulk (top). The device in Fig. 1c is designed to operate in
the telecom band, with a measured optical mode resonance at
⇥o = 1537 nm and an optical Q-factor of Qo = 9,500. With
the optical cavity field being largely confined to the slot be-
tween the nanobeams, the optical resonance frequency is sen-
sitively coupled to relative motion of the nanobeams in the
plane of the device (the x̂-direction in Fig. 1c). A displace-
ment of the test mass caused by an in-plane acceleration of the
supporting microchip can then be read-out optically using the
setup shown in Fig. 2a, where the optical transmission through
the photonic crystal cavity is monitored via an evanescently-
coupled fiber taper waveguide [25] anchored to the rigid side
of the cavity. Utilizing a narrow bandwidth (< 300 kHz) laser
source, with laser frequency detuned to the red side of the cav-
ity resonance, fluctuations of the resonance frequency due to
motion of the test mass are translated linearly into amplitude-
fluctuations of the transmitted laser light field (see inset in

Fig. 2a and appendix E). A balanced detection scheme allows
for efficient rejection of laser amplitude noise, yielding shot-
noise limited detection for frequencies above ⌅ 1 kHz.

Figure 2b shows the electronic power spectral density
(PSD) of the optically transduced signal obtained from the
device in Fig. 1c. The cavity was driven with an incident
laser power of Pin = 116 µW, yielding an intracavity photon-
number of ⇧ 430. The two peaks around 27.5 kHz arise from
thermal Brownian motion of the fundamental in- and out-
of-plane mechanical eigenmodes of the suspended test mass.
The transduced signal level of the fundamental in-plane reso-
nance, the mode used for acceleration sensing, is consistent
with an optomechanical coupling constant of gOM = 2⌅ ⇥
5.5 GHz/nm, where gOM ⇤ ⌃⇧o/⌃x is defined as the optical
cavity frequency shift per unit displacement. The dotted green
line depicts the theoretical thermal noise background of this
mode. The series of sharp features between zero frequency
(DC) and 15 kHz are due to mechanical resonances of the an-
chored fiber-taper. The noise background level of Fig. 2b is
dominated by photon shot-noise, an estimate of which is indi-
cated by the red dotted line. The cyan dotted line in Fig. 2b
corresponds to the electronic photodetector noise, and the pur-
ple dashed line represents the sum of all noise terms. The
broad noise at lower frequencies arises from fiber taper mo-
tion and acoustic pick-up from the environment. The right-
hand axis in Fig. 2b quantifies the optically transduced PSD
in units of an equivalent transduced displacement amplitude
of the fundamental in-plane mode of the test mass, showing a
measured shot-noise-dominated displacement imprecision of
4 fm/

⌥
Hz (the estimated on-resonance quantum-back-action

displacement noise is 23 fm/
⌥

Hz, and the corresponding on-
resonance SQL is 2.8 fm/

⌥
Hz; see appendix I 4).

At this optical power the observed linewidth of the mechan-

Optomechanics: general outlook

Fundamental tests of quantum 
mechanics in a new regime:
entanglement with ‘macroscopic’ objects, 
unconventional decoherence?
[e.g.: gravitationally induced?] 

Precision measurements 
small displacements, masses, forces, and 
accelerations 

Optomechanical circuits & arrays
Exploit nonlinearities for classical and 
quantum information processing, storage, 
and amplification; study collective
dynamics in arrays

Mechanics as a ‘bus’ for connecting 
hybrid components: superconducting 
qubits, spins, photons, cold atoms, ....

Tang lab (Yale)

Painter lab

Regal/Lehnert
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Optical displacement detection

input laser
optical
cavity

cantilever

reflection 
phase shift



Thermal fluctuations of a 
harmonic oscillator

Classical equipartition theorem:

•Direct time-resolved detection
•Analyze fluctuation spectrum of x

Possibilities:
extract 

temperature!



Fluctuation spectrum



Fluctuation spectrum



Fluctuation spectrum

“Wiener-Khinchin theorem”

area yields 
variance of x:



Fluctuation-dissipation theorem

General relation between noise spectrum and linear 
response susceptibility

susceptibility

(classical limit)



Fluctuation-dissipation theorem

General relation between noise spectrum and linear 
response susceptibility

susceptibility

for the damped oscillator:

(classical limit)



Displacement spectrum

Experimental curve:
Gigan et al., Nature 2006

T=300 K



Measurement noise



Measurement noise

meas

Two contributions to 
1. measurement imprecision
2. measurement back-action: 
fluctuating force on system

phase noise of
laser beam (shot 

noise limit!)

noisy radiation 
pressure force



“Standard Quantum Limit”

Both the imprecision noise and the backaction noise are
shown as functions of laser power (or optomechanical
coupling) in Fig. 22. When referring to “precision beyond
that at the standard quantum limit” in this context, one wants
to emphasize that one can make the imprecision noise alone
lower than the SQL (which implies that the backaction noise is
already appreciable). This situation has been achieved in
optomechanical systems for mechanical oscillators of nano-
scale (Anetsberger et al., 2009; Teufel et al., 2009) and
microscale dimensions (Schliesser et al., 2008; Westphal
et al., 2012). Using phase-squeezed input states of light a
reduction of the imprecision noise has been demonstrated in
microcavities (Hoff et al., 2013) and gravitational wave
detectors (Aasi et al., 2013).
The observed thermal noise at any large temperature can also

be used to obtain the value of the standard quantum limit via

S̄thxxðωÞ=S̄ZPFxx ðωÞ ¼ 2n̄thðωÞ ≈ 2kBT=ℏω.

This is a useful expression, since it is independent of the
calibration of the x measurement.
In the context of measurements at the SQL, an important

step for optomechanical experiments is to observe the effects
of radiation-pressure shot noise on the mechanical oscillator.
This has been achieved already in cold atom setups (Murch
et al., 2008; Brooks et al., 2012), which are conducted

routinely at low temperatures, and where the particularly
low effective mass of the atomic cloud leads to a very strong
single-photon coupling rate g0. This is an advantage, since the
ratio of quantum backaction to thermal force noise (at Δ ¼ 0)
is given by (assuming κ ≫ κex)

SFFðΩmÞ
SthFFðΩmÞ

¼ C0
n̄cav
n̄

¼ 16ηPg20Ωm

κ2ΓmωcavkBT
1

1þ 4Ω2
m=κ2

; ð75Þ

where C0 ¼ 4g20=κΓm is the single-photon optomechanical
cooperativity. These atomic cloud experiments have allowed
access to the radiation-pressure shot-noise spectrum, e.g., via
tracking the heating of the cloud (see Fig. 23) and sub-
sequently demonstrated the ability to detect forces at the
standard quantum limit (Schreppler et al., 2014).
Current solid-state-based devices still exhibit both signifi-

cantly smaller ratios g0=κ and deleterious effects of thermal
noise, which make the observation of radiation-pressure shot-
noise effects a challenging task. One possible strategy is to
measure the cross correlations between a strong beam exerting
radiation-pressure force fluctuations and another beam meas-
uring the resulting displacement fluctuations [Heidmann,
Hadjar, and Pinard (1997); see also Borkje et al. (2010) for a
more recent analysis]. This idea was demonstrated for a model
situation with deliberately introduced classical noise instead of
the quantum shot noise of a laser beam (Verlot et al., 2009). In
another experiment, it was demonstrated how the radiation-
pressure backaction can be employed for amplifying an
interferometric signal, which can lead to a sensitivity lower
than the SQL (Verlot et al., 2010). Recently, a direct observation
of radiation-pressure shot noise was reported (Purdy, Peterson,
and Regal, 2013), where an increasingly strong measurement
led to the expected increasing backaction force that was

FIG. 23 (color online). Observation of quantum radiation-pres-
sure force fluctuations through the energy transferred to a near-
ground-state mechanical oscillator. Experiments were performed
with an ultracold atomic gas serving as the mechanical element
within a Fabry-Pérot optical cavity. (a) The energy transferred to
the gas was quantified via the rate at which atoms were ejected
from a finite-depth optical trap. The force-fluctuation spectral
density at the mechanical oscillation frequency SFFðΩmÞ is
thereby obtained at different detunings Δ between the cavity
probe and resonance frequencies. From Murch et al., 2008.
(b) From the power difference between the red and blue motional
sidebands observed in the emission of a resonantly driven optical
cavity, one obtains the heat flux into the mechanical system via
the cavity probe. The observed heating, given in units of
mechanical energy quanta per second, matches well to that
predicted for intracavity shot noise from a coherent optical
field (gray line). From Brahms et al., 2012. Courtesy of D.
Stamper-Kurn.

FIG. 22 (color online). The full measured noise spectrum
contains contributions from the intrinsic fluctuations of the
mechanical oscillator, but also extra noise due to imprecision
in the measurement (typically flat in frequency) and noise due to
the backaction heating of the oscillator. Bottom: The added noise
evaluated at the mechanical resonance, plotted as a function of the
power of the measurement beam. At lower powers, imprecision
noise dominates (a small number of photons yields bad phase
resolution), while at higher powers the backaction noise repre-
sents the most important contribution. The standard quantum
limit minimal noise is reached at intermediate powers.
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within a Fabry-Pérot optical cavity. (a) The energy transferred to
the gas was quantified via the rate at which atoms were ejected
from a finite-depth optical trap. The force-fluctuation spectral
density at the mechanical oscillation frequency SFFðΩmÞ is
thereby obtained at different detunings Δ between the cavity
probe and resonance frequencies. From Murch et al., 2008.
(b) From the power difference between the red and blue motional
sidebands observed in the emission of a resonantly driven optical
cavity, one obtains the heat flux into the mechanical system via
the cavity probe. The observed heating, given in units of
mechanical energy quanta per second, matches well to that
predicted for intracavity shot noise from a coherent optical
field (gray line). From Brahms et al., 2012. Courtesy of D.
Stamper-Kurn.

FIG. 22 (color online). The full measured noise spectrum
contains contributions from the intrinsic fluctuations of the
mechanical oscillator, but also extra noise due to imprecision
in the measurement (typically flat in frequency) and noise due to
the backaction heating of the oscillator. Bottom: The added noise
evaluated at the mechanical resonance, plotted as a function of the
power of the measurement beam. At lower powers, imprecision
noise dominates (a small number of photons yields bad phase
resolution), while at higher powers the backaction noise repre-
sents the most important contribution. The standard quantum
limit minimal noise is reached at intermediate powers.

1416 Aspelmeyer, Kippenberg, and Marquardt: Cavity optomechanics

Rev. Mod. Phys., Vol. 86, No. 4, October–December 2014



“Standard Quantum Limit”

Best case allowed by quantum mechanics:

...as if adding the zero-point fluctuations a 
second time: “adding half a photon”

“Standard quantum limit 
(SQL) of displacement 
detection”

Both the imprecision noise and the backaction noise are
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that at the standard quantum limit” in this context, one wants
to emphasize that one can make the imprecision noise alone
lower than the SQL (which implies that the backaction noise is
already appreciable). This situation has been achieved in
optomechanical systems for mechanical oscillators of nano-
scale (Anetsberger et al., 2009; Teufel et al., 2009) and
microscale dimensions (Schliesser et al., 2008; Westphal
et al., 2012). Using phase-squeezed input states of light a
reduction of the imprecision noise has been demonstrated in
microcavities (Hoff et al., 2013) and gravitational wave
detectors (Aasi et al., 2013).
The observed thermal noise at any large temperature can also

be used to obtain the value of the standard quantum limit via

S̄thxxðωÞ=S̄ZPFxx ðωÞ ¼ 2n̄thðωÞ ≈ 2kBT=ℏω.

This is a useful expression, since it is independent of the
calibration of the x measurement.
In the context of measurements at the SQL, an important

step for optomechanical experiments is to observe the effects
of radiation-pressure shot noise on the mechanical oscillator.
This has been achieved already in cold atom setups (Murch
et al., 2008; Brooks et al., 2012), which are conducted

routinely at low temperatures, and where the particularly
low effective mass of the atomic cloud leads to a very strong
single-photon coupling rate g0. This is an advantage, since the
ratio of quantum backaction to thermal force noise (at Δ ¼ 0)
is given by (assuming κ ≫ κex)

SFFðΩmÞ
SthFFðΩmÞ

¼ C0
n̄cav
n̄

¼ 16ηPg20Ωm

κ2ΓmωcavkBT
1

1þ 4Ω2
m=κ2

; ð75Þ

where C0 ¼ 4g20=κΓm is the single-photon optomechanical
cooperativity. These atomic cloud experiments have allowed
access to the radiation-pressure shot-noise spectrum, e.g., via
tracking the heating of the cloud (see Fig. 23) and sub-
sequently demonstrated the ability to detect forces at the
standard quantum limit (Schreppler et al., 2014).
Current solid-state-based devices still exhibit both signifi-

cantly smaller ratios g0=κ and deleterious effects of thermal
noise, which make the observation of radiation-pressure shot-
noise effects a challenging task. One possible strategy is to
measure the cross correlations between a strong beam exerting
radiation-pressure force fluctuations and another beam meas-
uring the resulting displacement fluctuations [Heidmann,
Hadjar, and Pinard (1997); see also Borkje et al. (2010) for a
more recent analysis]. This idea was demonstrated for a model
situation with deliberately introduced classical noise instead of
the quantum shot noise of a laser beam (Verlot et al., 2009). In
another experiment, it was demonstrated how the radiation-
pressure backaction can be employed for amplifying an
interferometric signal, which can lead to a sensitivity lower
than the SQL (Verlot et al., 2010). Recently, a direct observation
of radiation-pressure shot noise was reported (Purdy, Peterson,
and Regal, 2013), where an increasingly strong measurement
led to the expected increasing backaction force that was

FIG. 23 (color online). Observation of quantum radiation-pres-
sure force fluctuations through the energy transferred to a near-
ground-state mechanical oscillator. Experiments were performed
with an ultracold atomic gas serving as the mechanical element
within a Fabry-Pérot optical cavity. (a) The energy transferred to
the gas was quantified via the rate at which atoms were ejected
from a finite-depth optical trap. The force-fluctuation spectral
density at the mechanical oscillation frequency SFFðΩmÞ is
thereby obtained at different detunings Δ between the cavity
probe and resonance frequencies. From Murch et al., 2008.
(b) From the power difference between the red and blue motional
sidebands observed in the emission of a resonantly driven optical
cavity, one obtains the heat flux into the mechanical system via
the cavity probe. The observed heating, given in units of
mechanical energy quanta per second, matches well to that
predicted for intracavity shot noise from a coherent optical
field (gray line). From Brahms et al., 2012. Courtesy of D.
Stamper-Kurn.

FIG. 22 (color online). The full measured noise spectrum
contains contributions from the intrinsic fluctuations of the
mechanical oscillator, but also extra noise due to imprecision
in the measurement (typically flat in frequency) and noise due to
the backaction heating of the oscillator. Bottom: The added noise
evaluated at the mechanical resonance, plotted as a function of the
power of the measurement beam. At lower powers, imprecision
noise dominates (a small number of photons yields bad phase
resolution), while at higher powers the backaction noise repre-
sents the most important contribution. The standard quantum
limit minimal noise is reached at intermediate powers.
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the gas was quantified via the rate at which atoms were ejected
from a finite-depth optical trap. The force-fluctuation spectral
density at the mechanical oscillation frequency SFFðΩmÞ is
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FIG. 22 (color online). The full measured noise spectrum
contains contributions from the intrinsic fluctuations of the
mechanical oscillator, but also extra noise due to imprecision
in the measurement (typically flat in frequency) and noise due to
the backaction heating of the oscillator. Bottom: The added noise
evaluated at the mechanical resonance, plotted as a function of the
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Notes on the SQL

“weak measurement”: integrating the signal 
over time to suppress the noise

trying to detect slowly varying “quadratures of 
motion”:

SQL means: detect        down to          on a 
time scale 

Heisenberg is the reason for SQL!

Impressive:                      ! 

no limit for instantaneous 
measurement of x(t)!



Enforcing the SQL (Heisenberg) 
in a weak optical measurement

N photons arrive in time t
fluctuations:

Poisson distribution for 
a coherent laser beam

1. Uncertainty in phase estimation:

reflection phase shift:
(here: free space)

2. Fluctuating force: momentum transfer

HeisenbergUncertainty product:



Quantum dynamics



Optomechanical Hamiltonian

optical
cavity mechanical

mode
laser

Review “Cavity Optomechanics”: 
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Converting photons into phonons

photon



Converting photons into phonons

phonon



Optomechanical Hamiltonian

optical
cavity mechanical

mode
laser

laser detuning optomech.
coupling

Review “Cavity Optomechanics”: 
M. Aspelmeyer, T. Kippenberg, FM
Rev. Mod. Phys. 2014



Optomechanical Interaction: Nonlinear

â†â(b̂† + b̂)



“Linearized” Optomechanical Hamiltonian

bare optomechanical coupling
(geometry, etc.: fixed!)

“laser-enhanced
optomechanical coupling”: g = g0↵

tuneable! phase!

↵
laser-driven

cavity amplitude

~g0â†â(b̂+ b̂†)

~g0(↵�â† + ↵⇤�â)(b̂+ b̂†)

â = ↵+ �â



Phonons & Photons

mechanical oscillator driven optical cavity

After linearization: two linearly coupled harmonic oscillators!



Photon-phonon polaritons
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Photon-phonon polaritons

phonon-like

photon-like
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phonon+photon

phonon-photon

detuning

fr
eq

ue
nc

y

��

⌦ 2g



mechanical oscillator driven optical cavity

After linearization: two linearly coupled harmonic oscillators!

Phonons & Photons



mechanical oscillator driven optical cavity

After linearization: two linearly coupled harmonic oscillators!

HOT COLD

Phonons & Photons



phonon-like

photon-like

phonon-like

photon-like

detuning

Aside: Quantum Heat Engine in 
Optomechanics

Keye Zhang, Francesco Bariani, Pierre Meystre; Phys. Rev. Lett. 2014 
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Different regimes
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Effective Optomechanical Damping Rate

damping=
cooling

antidamping=
heating=

amplification

laser
detuning

red-
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Effective Optomechanical Damping Rate

damping=
cooling
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Laser-cooling towards the ground state

FM et al., PRL 93, 093902 (2007)
Wilson-Rae et al., PRL 99, 093901 (2007)

analogy to (cavity-assisted) 
laser cooling of atoms
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“The slopes of  
Optomechanics”





Linear Optomechanics
Displacement detection
Optical Spring
Cooling & Amplification
Two-tone spectroscopy
State transfer, pulsed operation
Wavelength conversion
Radiation Pressure Shot Noise
Squeezing of Light
Squeezing of Mechanics
Entanglement
Precision measurements

Nonlinear Classical Optomechanics
Self-induced mechanical oscillations
Synchronization of oscillations
Chaos

Nonlinear Quantum 
Optomechanics

Phonon number detection
Phonon shot noise
Photon blockade
Optomechanical “which-way” expt.
Nonclassical mechanical q. states
Optomechanical matter-wave
interference
Nonlinear OMIT
Noncl. via Conditional Detection
Single-photon sources
Coupling to two-level systems

Optomechanical Arrays
Bandstructure in arrays
Synchronization in arrays
Transport of photons & phonons
Topological phases



Optomechanical 
wavelength
conversion
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optics to optics:

Painter 2012

Wang 2012



Lehnert, Regal 2014

Cleland 2013

Schliesser, Polzik 2014

microwave/RF to optics:



Optomechanical 
Arrays



optical
mode

mechanical
mode

Single-mode optomechanics

✓displacement sensing
✓cooling
✓strong coupling
✓self-oscillations (limit cycles)

g



Many modes

optical
mode

mechanical
mode



First realizations

Lipson group, Cornell arXiv:1505.02009 (synchronization)

20µm



= free-standing photonic crystal structures (Painter group)

Optomechanical crystals

advantages:
tight vibrational confinement:
high frequencies, small mass 
(stronger quantum effects)

tight optical confinement: 
large optomechanical 
coupling
(100 GHz/nm)

integrated on a chip

localized optical and 
vibrational (GHz) mode

Safavi-Naeini et al PRL 2014 

2 µm

Eichenfield et al Nature 2009 



Optomechanical arrays

Optomechanical array: Many 
coupled optomechanical cells

laser drive

optical mode mechanical mode

Possible design based on “snowflake” 2D optomechanical crystal (Painter 
group), here: with suitable defects forming a superlattice (array of cells)



Modeling an optomechanical array

Quantum many-body dynamics in optomechanical arrays

Max Ludwig1, � and Florian Marquardt1, 2

1Institute for Theoretical Physics, Universität Erlangen-Nürnberg, Staudtstr. 7, 91058 Erlangen, Germany
2Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1/Bau 24, 91058 Erlangen, Germany

We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical sys-
tems. At each site of such an array, a localized mechanical mode interacts with a laser-driven cavity
mode via radiation pressure, and both photons and phonons can hop between neighboring sites.
The competition between coherent interaction and dissipation gives rise to a rich phase diagram
characterizing the optical and mechanical many-body states. For weak intercellular coupling, the
mechanical motion at di�erent sites is incoherent due to the influence of quantum noise. When
increasing the coupling strength, however, we observe a phase transition towards a regime of phase-
coherent mechanical oscillations. This transition and the phase diagram of the system are studied
using a Gutzwiller ansatz for the dynamics of the driven-dissipative system.

Introduction. - Recent experimental progress has
brought optomechanical systems into the quantum
regime: A single mechanical mode interacting with a
laser-driven cavity field has been cooled to the ground
state [1, 2]. Several of these setups, in particular op-
tomechanical crystals, o⇤er the potential to be scaled up
to form optomechanical arrays. Applications of such ar-
rays for quantum information processing [3, 4] have been
proposed lately. Given these developments, one is led
to explore quantum many-body e⇤ects in optomechani-
cal arrays. In this work, we analyze the nonlinear photon
and phonon dynamics in a homogeneous two-dimensional
optomechanical array. In contrast to earlier works [3–6],
here we study the array’s quantum dynamics beyond a
quadratic Hamiltonian. To tackle the non-equilibrium
many-body problem of this nonlinear dissipative system,
we employ a mean-field approach for the collective dy-
namics. First, we discuss photon statistics in the array,
in particular how the photon blockade e⇤ect [7] is al-
tered in the presence of intercellular coupling. The main
part of the article focusses on the transition of the collec-
tive mechanical motion from an incoherent state (due to
quantum noise) to an ordered state with phase-coherent
mechanical oscillations. For these dynamics, the dissipa-
tive e⇤ects induced by the optical modes play a crucial
role. On the one hand, they allow the mechanical modes
to settle into self-induced oscillations [8–15] once the op-
tomechanical amplification rate exceeds the intrinsic me-
chanical damping, see Fig. 1(b). On the other hand,
the fundamental quantum noise (e.g. cavity shot noise)
di⇤uses the mechanical phases and prevents the mechan-
ical modes from synchronizing. This interplay leads to
an elaborate phase diagram characterizing the transition.
To gain further insight, we develop a semiclassical model
describing the coupling of the mechanical phases and the
influence of quantum noise.

While true long-range order is prohibited for a
two-dimensional system with continuous symmetry,
a Beresinskii-Kosterlitz-Thouless transition towards a
state with quasi-long range order is possible. The ordered
mechanical phase thus resembles the superfluid phase in

mechanical mode

optical mode

intercellular coupling

b

driving strength

a

Figure 1. (a) Optomechanical array with localized mechani-
cal (b̂j) and laser-driven optical modes (âj) at each site. The
optical and mechanical coupling between neighboring sites is
set by J and K, respectively. (b) Onset of self-induced oscil-
lations for an isolated mechanical mode as a function of laser
driving strength (schematic). The classical dynamics (black
solid line) show a bifurcation. Quantum fluctuations blur the
transition (dashed blue line) and generate a mechanical state
whose phase is completely undetermined, see also Fig. 3(b).

two dimensional cold atomic gases [16] or Josephson junc-
tion arrays [17]. Notably, optomechanical arrays com-
bine the tunability of optical systems with the robustness
and durability of an integrated solid-state device. Other
driven dissipative systems that have been studied with
regard to phase transitions recently include cold atomic
gases [18–23], nonlinear cavity arrays [24, 25] and opti-
cal fibres [26]. In a very recent work and along the lines
of [18], the preparation of long-range order for photonic
modes was proposed using the linear dissipative e⇤ects
in an optomechanical array [6]. Our work adds the novel
aspect of a mechanical phase transition to the studies of
driven dissipative many-body systems.
Model. - We study the collective quantum dynamics of

a two-dimensional homogeneous array of optomechanical
cells (Fig. 1). Each of these cells consists of a mechanical
mode and a laser driven optical mode that interact via
the radiation pressure coupling at a rate g0 (~ = 1):

Ĥom,j = ��â†j âj +⇥b̂†j b̂j �g0(b̂
†
j + b̂j)â

†
j âj +�L(â

†
j + âj).

(1)
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Tight-binding model for photons & 
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The mechanical mode (b̂j) is characterized by a frequency
⇤. The cavity mode (âj) is transformed into the frame
rotating at the laser frequency (⇥ = ⇧laser � ⇧cav) and
driven at the rate �L. In the most general case, both
photons and phonons can tunnel between neighboring
sites ⌃ij⌥ at rates J/z and K/z, where z denotes the
coordination number. The full Hamiltonian of the array
is given by Ĥ =

⇤
j Ĥom,j + Ĥint, with

Ĥint = �J

z

⌅

⇥i,j⇤

�
â†i âj + âiâ

†
j

⇥
� K

z

⌅

⇥i,j⇤

�
b̂†i b̂j + b̂ib̂

†
j

⇥
.(2)

To bring this many-body problem into a treatable form,
we apply the Gutzwiller ansatz Â†

i Âj ⇥ ⌃Â†
i ⌥Âj +

Â†
i ⌃Âj⌥ � ⌃Â†

i ⌥⌃Âj⌥ to Eq. (2). The accuracy of this ap-
proximation improves if the number of neighboring sites z
increases. For identical cells, the index j can be dropped
and the Hamiltonian reduces to a sum of independent
contributions, each of which is described by

Ĥmf = Ĥom � J
�
â†⌃â⌥+ â⌃â†⌥

⇥
�K

�
b̂†⌃b̂⌥+ b̂⌃b̂†⌥

⇥
.(3)

Hence, a Lindblad master equation for the single cell den-
sity matrix ⇤̂, d⇤̂/dt = �i[Ĥmf , ⇤̂] + ⇥D[â]⇤̂+ �D[b̂]⇤̂ can
be employed. The Lindblad terms D[Â]⇤̂ = Â⇤̂Â† �
1
2 Â

†Â⇤̂ � 1
2 ⇤̂Â

†Â take into account photon decay at a
rate ⇥ and mechanical dissipation (here assumed due to
a zero temperature bath) at a rate �.

Photon statistics. - Recently, it was shown that the ef-
fect of photon blockade [7] can appear in a single optome-
chanical cell: The interaction with the mechanical mode
induces an e⌅ective nonlinearity for the photon field of
strength g20/⇤ [7, 27]. Hence, the presence of a single
photon can hinder other photons from entering the cav-
ity. To observe this e⌅ect, the nonlinearity must be com-
parable to the cavity decay rate, i.e. g20/⇤ & ⇥, and the
laser drive weak (�L ⇤ ⇥) [7, 28].

To study nonclassical e⌅ects in the photon statistics,
we analyze the steady-state photon correlation function
g(2)(⌅) = ⌃â†(t)â†(t+ ⌅)â(t+ ⌅)â(t)⌥/⌃â(t)†â(t)⌥2 [29] at
equal times (⌅ = 0), with g(2)(0) = 1 for a coherent state,
and g(2)(0) < 1 (> 1) indicating anti-bunching (bunch-
ing). Here (Fig. 2), we probe the influence of the collec-
tive dynamics by varying the optical coupling strength J ,
while keeping the mechanical coupling K zero for clarity.
We note that, when increasing J , the optical resonance
e⌅ectively shifts: ⇥ ⌅ ⇥ + J . To keep the photon
number fixed while increasing J , the detuning has to be
adapted [30]. In this setting, we observe that the inter-
action between the cells suppresses anti-bunching (inset
of Fig. 2). Photon blockade is lost if the intercellular
coupling becomes larger than the e⌅ective nonlinearity,
2J & g20/⇤. Above this value, the photon statistics shows
bunching, and ultimately reaches Poissonian statistics for
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Figure 2. Loss of photon blockade for increasing optical cou-
pling in an array of optomechanical cavities. The equal time
photon correlation function shows anti-bunching (g(2)(0) < 1)
and bunching (g(2)(0) > 1) as a function of detuning ⇥ and
optical coupling strength J . The smallest values of g(2)(0)
are found for a detuning ⇥0 = �g20/⇤. When increasing the
coupling J while keeping the intracavity photon number con-
stant, i.e. along the dashed line, photon blockade is lost (inset,
g(2)(0) as black solid line). For a smaller driving power (inset,
blue solid line, �L = 5 · 10�5⇥), anti-bunching is more pro-
nounced, and the behavior is comparable to that of a nonlin-
ear cavity (inset, dashed line). The hatched area in the main
figure outlines a region where a transition towards coherent
mechanical oscillations has set in (see main text and further
figures). ⇥ = 0.3⇤, �L = 0.65⇥, g0 = 0.5⇤, � = 0.074⇤.

large couplings. Similar physics has recently been ana-
lyzed for coupled qubit-cavity arrays, [30]. For very large
coupling strengths, though, the density plot of Fig. 2 re-
veals signs of the collective mechanical motion (hatched
area). There we observe the correlation function to os-
cillate (at the mechanical frequency) and to show strong
bunching. We will now investigate this e⌅ect.

Collective mechanical quantum e�ects. - To describe
the collective mechanical motion of the array, we focus
on the case of purely mechanical intercellular coupling
(K > 0, J = 0) for simplicity. Note, though, that the
e⌅ect is also observable for optically coupled arrays, as
discussed above.

As our main result, Figs. 3(a)and 4(a) show the
sharp transition between incoherent self-oscillations and
a phase-coherent collective mechanical state as a function
of both laser detuning ⇥ and coupling strength K: In the
regime of self-induced oscillations, the phonon number
⌃b̂†b̂⌥ reaches a finite value. Yet, the expectation value
⌃b̂⌥ remains small and constant in time. When increas-
ing the intercellular coupling, though, ⌃b̂⌥ suddenly starts
oscillating:

⌃b̂⌥(t) = b̄+ re�i�eff t. (4)

Our more detailed analysis (see below) indicates that

optical coupling
(photon tunneling)

mechanical coupling
(phonon tunneling)

J K

Max Ludwig, FM, Phys. Rev. Lett. 111, 073602 (2013)

laser detuning
� = !L � !

opt



Optomechanical Arrays

conceptually simple: one material, with holes

global view: 
light-tunable metamaterial for photons & phonons

similar in spirit:
optical lattices
nonlinear optical materials



Optomechanical Arrays: The Future

Synthetic magnetic fields
for photons/phonons Topological Phases

Dirac Physics

Synchronization and
Pattern Formation

Strongly Correlated
Quantum Physics?

Transport
(edge states/wires)

Tuneable/re-
configurable in-situ

All-optical 
control/readout

Nonequilibrium
dynamics/Quench 

physics/Thermalization

laser drive

Quantum Information 
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Nonlinear dynamics

blue-detuned laser:
anti-damping!



Nonlinear Dynamics



Nonlinear Dynamics

Beyond some laser input power threshold:  instability

Amplitude A

Mechanical displacement x

Time t

Self-sustained mechanical oscillations!
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An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!
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An optomechanical cell as a Hopf oscillator

Amplitude fixed, phase undetermined!

... Collective dynamics in an array of 
coupled cells?
Phase-locking: synchronization!

bifurcation

amplitude
laser
power

phase



Synchronization: Huygens’ observation

Coupled pendula synchronize...
...even though intrinsic frequencies slightly different

(Huygens’ original drawing!)

important in physics, chemistry, biology, ...
Josephson arrays, laser arrays, ...



The Kuramoto model

Kuramoto model:

•captures essential features
•often found as limiting model

Acebron et al. , Rev. Mod. Phys. 77, 137 (2005)
Kuramoto 1975, 1984



Synchronization:

phase lag

The Kuramoto model
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The washboard potential

U = ��⌦��� 2K cos(��)

��̇ = � @U

@��

��̇ = �⌦� 2K sin(��)
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Synchronization of two optomechanical oscillators?

limit cycle
(blue-detuned drive)
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Synchronization of two optomechanical oscillators!

G. Heinrich et al., Phys. Rev. Lett. 107, 043603 (2011)
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Experiments (two cells, joint optical mode)
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Figure 2. Synchronized motion of two optomechanical oscillators. a The evolution 

of the RF power spectrum of the transmitted light as the pump power increases. b-e line 

traces of the power spectrum shown in a when both resonators are in a thermal state 

(regime I, b), c one resonator is in thermal motion while the other resonator experiences 

regenerative oscillations (regime II), d the chaotic regime (III) and e the two resonators 

are locked (regime IV). The values of the pump power where the cuts are taken are 

indicated. 
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7-disk array

Lipson group PRL 2015 (synchronization)

20µm

oscillation peaks and a broad noise floor [Fig. 3(a)]. The
distinct oscillation peaks form because Ωi is different for
each OMO and they beat to generate many rf tones [30,31].
The increase in the noise floor is likely due to the finite
interaction between the mechanical modes mediated by the
optical field but not yet strong enough to transition into a
locked state [7,32,33]. As the laser power further increases
to Pin ¼ 280 μW, the onset of synchronization [Fig. 3(a)]
is evident as the peaks on the rf spectrum merge into a
single large peak and the noise floor is reduced. The much
weaker sidebands around the main oscillation signal are
due to the much weaker oscillatory motion induced by
thermal force displacing the OMOs from the synchronized
state [7]. In the four and seven coupled OMO arrays,
similar to the three-cavity system, we observe beating
between different mechanical modes and a broad noise
floor when the optical power is below the synchronization
threshold. As the laser power is increased, a single
oscillation peak appears accompanied by a sudden drop
in the noise floor, signifying the onset of synchronization
[Figs. 3(b) and 3(c)].
We show that in large arrays of OMOs, the phase noise of

the synchronized signal can be reduced below the thermo-
mechanical noise limit of an individual OMO by almost
10 dB. The phase noise of the modulated output light is
expected to drop as the oscillators are synchronized
[6,10,11]. We measure the phase noise of our oscillators
at 10 kHz offset from the carrier oscillation frequency,
where the phase noise of our oscillator is dominated by
thermomechanical fluctuation [26,34–36], a fundamental

limit imposed to the mechanical oscillator due to the
thermal bath of the environment. In Fig. 4(a), we show the
measured phase noise in a 1 × 2 OMO array [8]. As shown
in Fig. 4(a), the single OMO phase noise [26] at low optical
power is ∼ − 60 dBc=Hz and gradually increases as the
laser power is increased. The increase of phase noise is due
to phase slipping between the two OMOs [6]. As the
coupling between the OMOs increases with increasing
laser power, they synchronize. As expected, we observe the
phase noise drops by ∼3 dB as the two OMOs move from
the one-OMO oscillating state to a synchronized oscillation
state. Since the oscillators are nearly identical, synchron-
ized oscillations can be viewed as two oscillators operating
coherently, providing a larger effective mass while not
reducing the oscillation frequency [35]. In Fig. 4(c), we
show the measured phase noise of each large array of
oscillators by driving the system at high optical powers at
the optimal optical detuning where the phase noise is a
minimum [26]. The lowest phase noise measured in each
array of different size is plotted in Fig. 4(b). The measured
phase noise follows the 1=N dependence predicted by
theory [10,11,35,37].
The drop in phase noise can also be used to determine the

number of synchronized OMOs in a single array oscillating
in different states. We measure the phase noise in the 2 × 2
array as the oscillators change from a state where only two
OMOs are oscillating to a state where all four OMOs are
oscillating, as we infer from the light scattering intensities
captured on the IR camera. Figure 4(c) shows the power
spectrum of the transmitted light when the laser is tuned

(a) (b) (c)

FIG. 3 (color online). Synchronization in arrays of OMOs. Optical power spectrum of the (a) three-, (b) four-, and (c) seven-OMO
system as the input optical power increases. The vertical scale is from −110 to 0 dBm for each trace. Synchronization is characterized by
the sudden noise floor drop and the emergence of a single frequency in the optical power spectrum as indicated in the graphs. The
disorder in natural mechanical frequencies and incoherent dynamics before the onset of synchronization is evident from the rf peaks and
the broad noise floor. The seven-resonator array (c) shows multiple changes of noise shapes before eventually synchronizing, indicating
the presence of multiple oscillation states as a result of many OMOs.

PRL 115, 163902 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

16 OCTOBER 2015

163902-3
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Optomechanical Kuramoto model
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model Hopf model

eff. Kuramoto 
model

G. Heinrich et al., Phys. Rev. Lett. 107, 043603 (2011)

Standard Kuramoto model: synchronized

(here: for two oscillators)



Optomechanical Kuramoto model

Effective Kuramoto model
for optomechanical array:

optomech. 
model Hopf model

eff. Kuramoto 
model

G. Heinrich et al., Phys. Rev. Lett. 107, 043603 (2011)

Standard Kuramoto model: synchronized

(here: for two oscillators)



Pattern formation in optomechanical arrays

0.0.

Phase field

Spirals
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regime. We expect that this translates to systems with
small disorder in the natural frequencies.

Much of our discussion of the initial stages of evolution
will hinge on the approximations that become possible
when the phases on neighboring sites are close. Then the
phase model, Eq. (1), is well approximated by a second-
order expansion in the phase di↵erences [11]. This expan-
sion can be recast in dimensionless form using a single

parameter g

1d,2d

= 4D

'

C

2

/S

3. In a one-dimensional ar-
ray, for example, the resulting model reads
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where we have rescaled both the time, ⌧ = St, and the
phase field, h
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� 2Ct). The noise correla-
tor is h⌘
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�(⌧). The generalization to two
dimensions is straightforward.

Eq. (3) can be readily identified as a lattice version
of the Kardar-Parisi-Zhang (KPZ) model [12, 13, 32], a
universal model for surface growth and other phenom-
ena. This nonlinear stochastic continuum field theory
describes the evolution of a height field h(~r, t),

ḣ = ⌫�h +
�

2
(rh)2 + ⌘, (4)

with white noise ⌘(~r, t), where h⌘(~r
1

, t)⌘(~r
2

, 0)i =
2D�

d(~r
2

� ~r

1

)�(t). The di↵usive term tries to smooth
the surface, while both the noise and the nonlinear gra-
dient term tend to induce a roughening.

The relation of the KPZ model to coupled oscillator
lattices has been pointed out before [11]. However, up
to now it has remained unclear how far this formal con-
nection is really able to predict universal features of the
synchronization dynamics. In the present article, we will
indeed observe transient behavior where universal KPZ
dynamics is applicable, but we will also find that this
is invariably followed by phenomena that lead into com-
pletely di↵erent dynamical regimes. All the numerical
results discussed in this article will refer either to the full
phase model, Eq. (1), or to its approximate version, the
“lattice KPZ model” Eq. (3). From the comparison of
these models, we will be able to extract valuable predic-
tions for the synchronization dynamics.

It is straightforward to make the connection between
Eq. (3) and a one-dimensional lattice version of the KPZ
model more precise. Starting from Eq. (4), and given a
lattice constant a, we have to rescale time, ⌧ = (⌫/a

2)t,
and height, h

j

(⌧) = (�/⌫)h(x, ⌧), and choose a particular
discretization of the derivatives. Note that in the contin-
uum model in one dimension, it would even be possible
to get rid of all parameters by rescaling time, height and
space. In contrast, for the lattice model, we are left with
the one dimensionless parameter g

1d

= aD�

2

/⌫

3 [13, 33].
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Figure 2. Dynamics in the one-dimensional Kuramoto-
Sakaguchi model, Eq. (1). (a) Typical time evolution of the
phase field from homogeneous initial conditions. We sub-
tracted a trivial global drift of the phases. (b) Time evolu-
tion of the phase spread w'(t). The magenta curves show the
simulation result for di↵erent values of the e↵ective coupling
parameter g

1d

= 8 (upper curve) and g
1d

= 1 (lower curve).
After an initial transient, the curves approach an asymptotic
KPZ-scaling of w'(t) / t1/3 (dashed black lines). For a larger
value of the coupling, g

1d

= 50, we plot examples of the phase
spread from single simulations as thin gray lines. We see a
rapid increase whenever an instability occurs. The red curve
shows the small-ensemble average over 120 simulations. Af-
ter the rapid increase, it keeps growing in time, eventually ap-
proaching di↵usive behavior, w'(t) / t1/2 (dotted black line),
which can be fitted very well by w'(t) =

p
A+Bt (blue, dot-

ted line). For comparison, the green curve was obtained for
another parameter set, S/C = 0.1, g

1d

= 25. Note the loga-
rithmic scale of the axes. (See the appendix for more details
on parameters.)

This coupling constant will become important in the fol-
lowing.

We had derived our lattice model, Eq. (3), as an ap-
proximation to the phase model, Eq. (1), with its trigono-
metric coupling terms that are periodic in the phase
variables. Hence, for the evaluation of the equation of
motion, the configuration space of each phase variable
may be restricted to the compact interval [�⇡, ⇡). In
view of the foregoing discussion, one may then see the
phase (Kuramoto-Sakaguchi) model as a “compact KPZ
model”. This designation has indeed been proposed in a
recent article [34] (see also [35]).

The rescaling of time and phase introduced above,
for the approximate lattice model of Eq. (3), can also
be employed in the full phase model, Eq. (1). Cru-
cially, this leads to one more dimensionless parameter,
S/C. For example, the sine term will be converted to
(2C/S)

P
sin

⇥
(S/2C)(h

k

� h

j

)
⇤
. This establishes that

for given di↵erences h

k

� h

j

the approximation, Eq. (3),
becomes better for smaller S/C. For this reason, we will
focus on small values S/C ⌧ 1, where substantial find-
ings can be expected from the connection of the phase
model to KPZ dynamics.

First insights can be gained by direct numerical simu-
lations of the phase model. For one-dimensional arrays,
the outcome of a single simulation is displayed in Fig. 2a.

Questions...

“Phase Diagram” of this stochastic field theory?

What about the quantum regime?
Can the phase evolution show quantum coherence?
Can one couple this to topological transport?

See our publications:
www.mpl.mpg.de/en/institute/marquardt-division.html
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