

Josephson junction and SQUID based technology

Cryocourse 2016: Aalto School and Workshop in Cryogenics and Quantum Engineering

Juha Hassel 2.10.2016

Outline

1. Josephson junctions and SQUIDs; physics and technology

- A) Physical models for systems of *classical* Josephson junctions.
- B) Junction fabrication technology.

2. Appication examples

- A) Josephson voltage standards.
- B) SQUIDs in (bio)magnetometry.
- C) SQUIDs as low(esh) frequency amplifiers
- D) SQUIDs as microwave amplifiers
- E) Rapid single flux quantum logic.

1A Physical models for systems of classical Josephson junctions (JJs).

- JJ: weak link (tunnel barrier) between two superconductors.
- Fabrication by micro and nanolithographic processes

Superconductor 2

M. Kiviranta, et al, IEEE Trans. Appl Supercond, in print

- Josephson junction dynamics [1]:
 - Dynamical quantities phase difference $\phi = \delta_1 \delta_2$ and charge Q
 - The system is described by the total energy:

$$H = \frac{Q^2}{2C} - \left(\frac{\Phi_0}{2\pi}I(t)\phi + E_J\cos\phi\right) \qquad \left(E_J = \frac{\Phi_0I_c}{2\pi}\right)$$

[1] Literature, see e.g.

- P. Orlando, K. A. Delin, Foundations of Applied Superconductivity
- T. van Duzer, Principles of Superconducting Devices and Circuits

$$H = \frac{Q^{2}}{2C} - \left(\frac{\Phi_{0}}{2\pi}I(t)\phi + E_{J}\cos\phi\right),$$

$$\frac{\partial H}{\partial Q} = \frac{\Phi_{0}}{2\pi}\frac{\partial \phi}{\partial t}$$

$$\frac{2\pi}{\Phi_{0}}\frac{\partial H}{\partial \phi} = -\frac{\partial Q}{\partial t}$$

$$+Q \underbrace{I_{2}}_{I_{2}}I_{1}, \delta_{1}, V=Q/C$$

$$V=Q/C$$

$$I_{2} I_{1}, V_{1}, V=I_{1}, V=I_{1},$$

'Classical' limit (today's subject)

- The number of energy states corresponding to a potential well minimum large ($\Delta E \ll E_J$)
- Thermal energy corresponding to energy state separation large $(kT >> \Delta E)$
- Quantum limit (beyond today's scope)
 - Opposite limit: $\Delta E > \sim E_J$, $kT < < \Delta E$
 - Single charge dynamics, quantum computing applications ...

Exercise :

a) Show that $\Delta E \ll E_J$ implies $E_J \gg E_c$ with $E_c = e^2/2C$ single charge energy.

- Building models for the systems of classical Josephson junctions:
 - Write differential forms of Kirchoffs equations supplemented by Josephson relations.

Add resistive damping (RCSJ model^{*}):

*Resistively and capacitively shunted junction'

- Introducing dimensionless unit system:
 - Avoid redundant degrees of freedom.
 - Basic equation:

$$\beta_c \frac{d^2 \phi}{\partial t} + \frac{d \phi}{dt} + \sin \phi = i(t),$$

where

$$\beta_c = \frac{2\pi I_c R^2}{\Phi_0}$$

and the dimensionless unit system has been adopted:

and the set $i = \frac{I}{I_c}$ $\tau = \frac{2\pi I_c R}{\Phi_0} t$

SQUID:

- superconducting loops cut by JJ:s
- Example: DC SQUID (two identical junctions)
- Analysis similar to the single JJ
 - though "new physics": relationship between the magnetic flux quantization
 - Consequence of superconductor electrodynamics and requirement of single valuedness of wavefunction phase

$$\Phi = \frac{\Phi_0}{2\pi} (\phi_1 - \phi_2)$$

$$\begin{array}{c|c}
I(t) \\
L & & & \\
 & & & \\
\hline L & & & & \\
 & & & & \\
\hline L_c & & & & \\
\hline I_c & & & & I_c \\
\hline C & & & & C \\
\hline \end{array}$$

1

VT

 Dynamical equations of DC SQUID.

$$U(v,\phi) = \frac{1}{\beta_L} (\phi - \phi_{ext})^2 - iv - \cos v \cos \phi$$

11

1B Junction fabrication technology

- Industrially, the most established technology is so called Niobium Trilayer technology
 - Nb/AI-AIOx/Nb junction stack grown in-situ.
 - Nb critical temperature Tc~9 K
 - A few nm of AI (Tc ~1 K) superconducting by proximity e.g. at T = 4.2 K
 - In-situ oxcidation of aluminium with controlled exposure to tune the critical current

- Multilayer structures for flexible designs
 - Superconducting layers for jump wiring, flux coupling, …
 - Normal conducting resistive layers for shunts, terminations...
 - Insulating layers for capacior dielectrics and insulation
- Optical lithography and materialselective etching methods for patterning
 - Reactive ion etching in reactive plasma.
 - Wet etching with selected chemicals.
- Planarisation techniques for enabling smooth surfaces in layer crossings.

Al/AlOx

30

20

x [µm]

d(Nb1) = 120 nm

40

Nb1

10

0

0

- 150 mm wafer automated processes.
- A variety of characterisation methods
 - On-wafer automated probe stations
 - Microscopy (optics, SEM, AFM...).

Automated (25 wafers) cassette to cassette Nb, NbN and tunnel junction sputter system. 14

2A Josephson voltage standards

- Under RF bias $i(t) = i_0 + i_1 sin(\omega t)$
- In a desirable mode, during one pump period the phase propagates over integer n minima of washboard potential
 - Average voltage accross the junction then $V = n\Phi_0 f$
 - Criterion for 'clean' phase locking is that the tunnel element is effectively biased by RF voltage Zi₁
 - Sufficiently small shunt impedance Z

- $V = n\Phi_0 f$ depends only on constants of nature and the frequency f
- Frequency f can be accurately produced by an atomic clock
 - \Rightarrow Operates as an exact voltage reference
 - ⇒Today the practical realisation of the unit of Voltage in all national standards laboratories
- Practical realisation
 - Voltage produced by a single junction small (typical frequencies 10-80 GHz, $\Phi_0 = 2.07$ Vs \Rightarrow voltage from tens to hundreds of microvolts
 - In practice voltage levels from 1 V to 10 V needed
 ⇒ arrays of 2000 20000 JJ:s needed

- Example:
 - A voltage standard designed and fabricated by VTT
 - 2x3577 JJ:s, driven at about 70 GHz
 - Produces a maximum voltage of about 1.7 V

Tubes for DC

- Parts of the measurement setup:
 - Cryoprobe with E-band waveguide (in pieces)

3577 junctions irradiated with 75 GHz

- Types of Josephson voltage arrays
 - "Conventional" arrays based on unshunted Superconductor -Insulator - Superconductor junctions
 - Extremely large $\beta_c \Rightarrow$ slow, hysteretic IV curves
 - Used as primary DC references
 - Not useful in AC metrology

- "Programmable" arrays (e.g. those presented earlier)
 - Dissipation added to junctions
 - Either by external shunts (as in previous slides)
 - Or by making a intrinsically dissipative tunnel barrier = 0.6
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 = 0.4
 - e.g. Superconductor Normal conductor -Superconductor junctions

 \Rightarrow Small $\beta_c \Rightarrow$ Fast, nonhysteretic

- AC generation by programmable arrays
 - Method developed by VTT and MIKES:
 - switch JVS between steps +n and -n
 - extract the fundamental Fourier component of the square wave
 - compare to the source being calibrated

J. Nissilä, et al., IEEE Trans. Instrum. Meas. 54, 636, 2005.

2B SQUIDs in (bio)magnetometry

VTT

- Autonomous SQUID as magnetometer?
 - Stability/noise optimization:
 - Nonhysteretic JJ behavior $\beta_c < 1$
 - Single-valued flux behavior $\beta_L \sim 1$

$$\beta_c \frac{d^2 \nu}{dt^{*2}} + \frac{d\nu}{dt^*} + \sin \nu \cos \varphi = i + i_{n,\nu}(t^*)$$
$$\beta_c \frac{d^2 \varphi}{dt^{*2}} + \frac{d\varphi}{dt^*} + \cos \nu \sin \varphi + \frac{2}{\beta_L}(\varphi - \varphi_a) = i_{n,\varphi}(t^*)$$

Sensitivity fundamentally limited by the noise from the shunt resistors.

- Noise from resistive source
 - Energy resolution: minimum detectable magnetic field energy within a SQUID loop.

Thermally-limited energy resolution (from simulations) ε

$$\varepsilon = 12k_B T \sqrt{L_{SQ}C_j}$$

Quantum-limited $\varepsilon \geq \hbar$

Flux noise

$$\Phi_n = \sqrt{2L_{SQ}\varepsilon}$$

- Typical parameters limit detection area
 - Junction technology => $I_c \sim 50 \ \mu$ A, $C \sim 2 \ pF$
 - β_L ~ 1 => L_{SQ} ~ 7 Ph
 - $L_{SQ} \sim \mu_0 d \Rightarrow$ SQUID loop dimension ~ 5 µm
 - \Rightarrow Flux noise $\Phi_n \sim 10^{-7} \Phi_0/Hz^{1/2}$

 \Rightarrow Magnetic field noise $S_B^{1/2} = \Phi_n/d^2 \sim 8 \text{ pT/Hz}^{1/2}$

 \Rightarrow Not good enough

- Typical magnetometer configuration
 - Magnetic field from e.g. brain converted to a flux on a SQUID loop
 - For optimal field-to-flux conversion a matching circuit used

- Ways of doing the inductance transformation
 - Washer
 - Intermediate transformer
 - Multiloop
 - Several loops in parallel to drop the inductance as seen by the junctions
 - Array SQUID

Multiloop

SQUID array

26

- Considerations about magnetometer SQUID design
 - Input transformers tend to generate parasitic resonances in the circuitry:
 - \Rightarrow Autonomous SQUID model no longer strictly valid.
 - \Rightarrow Handling (damping) the resonances needed in practical SQUID designs.

- Considerations about magnetometer SQUID design
 - Input transformers tend to generate parasitic resonances in the circuitry:
 - \Rightarrow Autonomous SQUID model no longer strictly valid.
 - \Rightarrow Handling (damping) the resonances needed in practical SQUID designs.

- Considerations about magnetometer SQUID design
 - Input transformers tend to generate parasitic resonances in the circuitry:
 - \Rightarrow Autonomous SQUID model no longer strictly valid.
 - \Rightarrow Handling (damping) the resonances needed in practical SQUID designs.

Model for Z (between A and ground),

- Considerations about magnetometer SQUID design
 - Input transformers tend to generate parasitic resonances in the circuitry:
 - \Rightarrow Autonomous SQUID model no longer strictly valid.
 - \Rightarrow Handling (damping) the resonances needed in practical SQUID designs.

- Considerations about magnetometer SQUID design
 - Input transformers tend to generate parasitic resonances in the circuitry:
 - \Rightarrow Autonomous SQUID model no longer strictly valid.
 - \Rightarrow Handling (damping) the resonances needed in practical SQUID designs.

- Electronics for reading out the SQUIDs?
 - Problem 1: The linearity of the SQUID is limited
 - Solution: Flux-locked loop to linearize the response
 - Problem 2: sensitivity of commercial room temperature amplifiers is not sufficient for reading out the
 - Solutions: local feedback based readout methods (see below).

- Magnetoencephalography
 - Direct recording of magnetic signature of neuronal activity of brain
 - Applications:
 - Presurgical mapping (epilepsy, brain tumours).
 - Fundamental studies of cognition.
 - A few hundred sensor channels.
 - Sensitivity requirement ~fT/Hz^{1/2}

Sensor data from MEG systems

• Magnetic field after visual stimulus at t = 0 for a human subject

- MRI:
 - Detecting Larmor preseccion
- Ultra-low-field magnetic resonance imaging (ULF-MRI)
 - Conventional MRI at 1.5 3 T fields (~100 MHz Larmor frequency)
 - SQUID-based systems demonstrated in a few locations
 - European MEGMRI collaboration demonstrated integration of commercial MEG system and ULF-MRI modality.

2C SQUIDs as low(esh) frequency amplifiers

- Low/intermediate frequency applications
 - General about amplifiers:
 - The performance of amplifier is chacaterised by:
 - A) Its optimal noise temperature
 - B) Its noise matching resistance
 - And the frequency dependencies of these.
 - A measure of 'goodness' of an amplifier is its impedance dependent noise temperature.

$$T_n = \frac{T_{n,opt}}{2} \left(\frac{R_d}{R_{opt}} + \frac{R_{opt}}{R_d} \right) \approx \frac{R_d i_n^2}{4k_b}$$

- The last approximation valid for SQUIDs at low *f* (very low optimum noise matching resistance R_{opt})
- \Rightarrow SQUID is intrinsically good for reading out very low impedance sources

- Example: superconducting transition edge sensors (TESs)
 - Superconducting films biased to transition => $R_d \sim 1 \text{ m}\Omega$
 - Applications in astronomical imaging (X-ray, THz).

Advanced Telescope for High-Energy Astrophysics (ATHENA)

X-ray Integral Field Unit (X-IFU)

Mikko Kiviranta, Advanced seminar, Heidelberg 12.6.2015

- For larger impedeance applications:
 - Intrinsic current sensitivity (and thus the noise temperature) can (in principle indefinitely) improved by adding turns to input transofrmer.
 - \Rightarrow Optimal for reading out low-impedance sources.
 - ⇒Large impedance sources require large input transformers (in analogy to magnetometer inductance matching)

1284:2 transformer configuration aimed for metrology applications. This one optimises to about ~ 100 k Ω at 1 K operating temperature, but needs ~100 m of thin film line!

J. Luomahaara, et al., Supercond. Sci. Technol. 25, 035006, 2012.

Input referred current noise measured with the transformer/SQUID entity.

J. Luomahaara, et al., IEEE Trans. Appl. Supercond 25, 1601705, 2013.

2D SQUIDs as microwave amplifier

- Josephson junction is a current or flux tunable inductor
 - => Parametric amplification (believe Sorin covered a lot of this on Friday)

P. Lähteenmäki, et al., J. Low Temp. Phys. 175, 868, 2014.

- Intrinsic dynamic resistance R_d of JJ negative
 - Leads to hysteretic characteristics
- Overdamped JJ -> positive dynamic impedance, stable system.
- Remove damping in LC centered band:
 - Instability ('negative Q' osillations).
- Couple to external circuitry as below
 - Stability restored.
 - In signal band stability restoration leads to the gain in the LC centered band!

V. Vesterinen, et al., Sci. Rep. 2, 276, 2012.

2E Rapid single flux quantum logic

- Previous applications rely on SQUID dynamics at finite voltage dynamics
 - Flux quanta 'flowing' continuously
- RSFQ technology is based on single 2π phase rotations to produce logic operations
- Aim here understanding of basic Josephson dynamics used in RSFQ

RSFQ microprosessor with ~22 000 JJs [M. Tanka, et. al, Supercond. Sci. Technol. 20, 2007].

- Introduction of phase rotation dynamics: a simple DC SQUID ring biased to a current below *I_c*
 - Force left junction switch
 - Case 1: β_L < 1</p>
 - Second junction switches too
 - No flux stored in the ring
 - Remains in "False" state

- Case 2: β_L > 1
 - Second junction does not switch
 - Flux quantum stored in the ring
 - Switches to "True" state

- RSFQ technology uses this type of JJ/SQUID switching dynamics to construct logical operations
- A general RSFQ cell consists of a clock input, signal inputs and outputs
- If a flux quantum approaches to signal input between clock pulses it means, that the input is set to logical "True", if not it is set to "False"
- The ending clock pulse sends or does not send an output pulse depending on the result of the logical function the cell realises

Figure 5.16f Block diagram of a general RSFQ cell and the timing diagram showing incoming pulses on S_1 and S_2 arriving between two clock pulses. The output pulse is produced by the clock pulse ending the period. (Footnote 105.)

- Basic functionalities of RSFQ (1):
 - 'Propagation'
 - Pulses are propagated in Josephson transmission lines with soliton dynamics:

DC/SFQ

1 in

L2

L3

L1

JTL

L5

0000

Bias resistors

J1 J2

>

J4 J3

14

 I_{b2}

J5 *

0000

J6>

J6 J5

1 mm

- Basic functionalities of RSFQ (2):
 - 'Storage'
 - The flux quanta are temporarily stored as persistent current in certain **SQUID** loops
 - 'Selection'
 - Switching conditional to whether a given SQUID loop has flux quantum stored (persistent current) or not.

J. Hassel, et. al., New J. Phys. 9, 158, 2007.

• An example cell:

OR date

T. van Duzer, Principles of Superconducting Devices and Circuits .

Summary

- Josephson dynamics simple but very versatile
 - Phase locked Josephson oscillation => voltage metrology
 - Flux/field controlled phase propagation
 - Magnetometry, current amplifier
 - Tunable/nonlinear inductance, negative resistance
 - Parametric amplification
 - Controlled single phase rotations
 - Ultrafast logic