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Production and Measurement of Low Pressure

Pumping
pressure ranges
pluming

pumps

Measuring Pressure
mechanical

thermal conductivity
viscocity

lonisation

Vacuum flansh
feed throughs
seals

leaks

leak detection
diffusion

outgasing




Units

1N/m2 =1Pa =10 bar

1 Torr =4/3 mbar

1 dyn/cm? = 10°N/cm? = 0.1 Pa

1 atm. =760 Torr physical atmosphere
1 at. = 1 kp/cm? =0.981 bar technical atmosphere
1 psi = |b/in?

1y = 103 Torr




Mean Free Path Depending on Pressure (Ideal Gas Law)

Vacuum range

p [mbar]

Molecules / cm3

mean free path

Ambient pressure

Low vacuum
Medium vacuum
High vacuum

Ultra high vacuum

Extremely high
vacuum

1013

300 ..1

1..103

10-3.. 107

10-7... 1012

<1012

2.7 x 1019,

101... 106

10%... 1013

1013... 10°

10°... 10*

<104

68 nm

0.1...100 pm

0.1...100 mm

10cm ... 1 km

1 km ... 10° km

> 102 km




Vacuum Pumps and Pressure Ranges

Ultra-high vacuum

High vacuum

Medium vacuum

Low vacuum

molecular flow

I_

Turbo mq

Rotary vpone

b— Diuphmgrh

agedry

|_ Multi-st

Rotgry plunger

lecular

Diffusio

Sublimat

Roots

Adsorpt

Sputter i

Lryogenid

1078

1077

107 107°

p (mbar)




Pumping Lines

. A
Flow resistance: W = —2
q
Flow conductance: F — - — 4
ow conductance: R
W Ap
1
Lt 3 .
— serial

1 2 3
I I I I parallel

throughput
dV [mbar / ]
q=p—
dt S

W:W1+W2+W3+

L1 11
F _ Fl F2 F3 ‘oo

IR S SR I
W - Wl W2 W3 P

F=F +F+Fy+ ..



Flow conductance
P Pe

L : / average pressure
4
Viscous regime _, v _ o _
4=Pa gy = Pagr (p1 — p2)
e o oy
viscosity — A — Da
Ap 16mL
Molecular flow (long tube, L/r >5) ‘
Ia o 4?“3 /27TkBT
long — 3], m

short fube, L/r <5

3L

Fshort — _Kﬂong
81/

Clausius factor

/




Flow conductance

& Viscous
flow

F/Fmolecular' B

Molecular flow S :
= Transition region

| 1 1 I | 1 1 i |

P

Transition r‘egion: b= Fviscous + « Fmolecular
T, p,n,r)= 081.1

a =~ 1



Design of Pumping Systems

most cases: molecular flow

Fs
A

2/"3

final segment at room temperature

n
A / Z if po. To, g are known, the design of the
o pumping system is straight forward




Types of Pumps

Gas transfer pumps Entrapment

Positive displacement Kinetic

I Adsorption
Rotary pump
Drag Getter
Sliding vane l

Turbo molecular  Fluid entrainment Non-evaporable getter

Rotary plunger
Roots t Water jet Sputter ion

—Dry pumps Diffusion Diode
tDmphragm

Multi-stage rotor

relevant parameters: pumping speed liters/second {/s
throughput
minimal pressure
operating range
inlet pressure
oil or dry




Pumping Process

—_— Vapour

'V'WU"

Leaks

Gas load
.

Outqassing

Pump

P =D, exp{—t/(V / S)}

H_J
pumping time constant




Gas Transfer Pumps

Rotary pumps
Scroll pumps

Roots pumps




Rotary Pumps

Principle: Displacement pump for viscous flow / Knudsen regime
® suction phase

® compression phase

® discharge phase

oil lubricated
low wear

ultimate pressure 10*-10 mbar
volume flow rate 1-100 m*/h







Ramelli vane pump

0
(0.0)
(@)
~—
o
&
-}
o
o
=
l—ll
\)
(@)
(o))
<
>
Q
O
Q
+
<
Q
>
<
-




Operating Principle of a Rotary Pump

b) c)

Drehschieber,

Drehrichtung

Stator
suction phase

d) e) f)

compression phase discharge phase



Rotary Pumps

Exhaust T J Inlet
Gas ballast T 57
inlet valve ';['
Exhaust valve — Pump
—fluid
(Gas ballast
inlet —Rotor
Shiding vanes —
—5tator il ‘
Orain plug—] Exhaust

Fluid seals
1 V| ER

two stage rotary pump



Rotary Pumps With Gas Ballast

gas ballast is used when the evacuated
vessel contains condensable vapours

_ 10
e - T.1_'" 0-stage ———— Without gas ballast
10 - —
m - ~ Single- — — — — With gas ballast
E 4+ ! s stage
- / /
1071 L1 - ! !

10°510°%10°3 107210 1 10 102 103
p (mbar)



Scroll Pumps

dry mechanical pump

used as backing pump in dry pumping systems

oil-free
sliding PTFE seals, wear

volume flow rate 1-100 m*/h
ultimate pressure 0.1-0.01 mbar

other application:
scroll compressor as charger for car

engines (VW G-charger)




Scroll Pumps Operation

Inlet
Orbiting scroll Outlet

Compression

’ Suction process
Exhaust process
Fixed scroll Compression process
(a) (Suction completed) (b)

1t 4
(d) (©)



Root Pumps

Displacement pumps with large
large throughput ~ 250 torr ¢/s

typical application: 3He/*He-Kryostat

backing pump needed

no sealing fluid - dry
no sliding seals
(exception shaft feed trough if present)

compression ratio typically 10:1
volume flow rate 100-1000 m*/h
ultimate pressure 10 mbar

potential trouble spots:
rotating seal
close mechanical tolerance 0.3 mm

two lobed rotors interlocked

and synchronised

1
2
~







Keplers gear pump 1600 p heim Machi
First prototype 1604 by Jost Buergi d(;l;ie;neec;nc\]rogrfdl?giso

Rotary vacuum pump

around 1800, developed by Fabry




Pumping Speed of a Roots Pump
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Kinetic Pumps:

Drag and Turbo Pumps

QOil Diffusion Pumps




Molecular Pumps: Drag and Turbo

Principle: Quickly moving wall, momentum transfer
molecular flow regime
needs backing pump

gases (H,, He)
difficult to pump:
high sound velocity,
high particle velocity




Molecular pumps:

Gaede pump (Drag pump)

inlet outlet

Gaede 1913

10.000-30.000 rpm
10-100 I/s
needs fore pump (max 0.1 mbar)

Drag and turbo

Turbomolecular pump (TMP)

Becker 1958

10.000-30.000 rpm
10-1000 /s
needs fore pump (max 10~ mbar)




Compression Ratio

K = pin /Pou‘r

compression ratio

103 - 106
10# - 107
108 -10°

o
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Foreline pressure (mbar)

Nitrogen Helium Hydrogen




Pumping Speed

Pumping Speed

Helium

Hydrogen

rotary backing pump is required
producing a pressure of 10-2 mbar

magnetically levitated
bearings = no oil or grease




Compound TMP: TMP + Gaede

Gaede-stage

Advantage: low requirements for ultimate
fore-pump pressure:




Diffusion pump

Principle: Diffusion pumps are vapor jet pumps
momentum transfer from a heavy high speed vapor jet
to gas molecule will be moved through pump
molecular flow regime, needs good fore pump
Pumping speed: 100 - 10.000 |/s
Pumping speed: S(H,)/S(air) = 3

Inlet from
recipient

First high-vacuum pump

Invented 1915 by Wolfgang Gaede

Improved 1916 by

@9 Outlet Irving Langmuir and W. Crawford
®_ o forepump

boiling oil




Diffusion pump

Early Langmuir mercury diffusion pump modern version of a diffusion pump




Diffusion pump

Battery of Diffusion Pumps used in
the Manhatten Project




Diffusion Pumps

— baos molecules
%Inlef flange
Cooling 2,’& 1 apour et
coils t

I - Exhuulsfﬂpn?e
(Backing line

O

Hot vapour—- //’ny_mp fluid

IRIRARANANRAZE Heater

Trapping the pumped gas molecules in a high velocity
stream of oil vapor

low ultimate pressure, high pumping rate, small cost

pumping speed between 102 ... 10* ¢/s

I
|
|
|
|

| |
[ ks SN | L
p, (mbar)




Pumping Speed

Constant

Constant Speed Q
e —_

Critical Point /

Mechanical
Pump
Effect
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Entrapment Pumps:

Getter Pumps

Adsorption Pumps




Adsorption Pumps

_~ large surface area (for example charcoal)

heater for regeneration

Cold Head

NO gas transfer pump, but getter principle:

® gas atoms / molecules adsorbed at cold surface

® best vacuum at all

® large volume flow rate (up to 10° I/s) for limited times




Vapour Pressure of Different Gases
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Measurements of Pressure

1000 mbar e mechnical gauges
(e.g. Bourdon gauge)

low / rough
vacuum

(e / medi 1 mbar
Ine / meaium ® MclLeod compression gauge

vacuum 3 ® Pirani gauge
10 * mbar

h|gh ® |onization gauge
vacuum ® Penning gauge

10'7 mbar
ultra-high

vacuum




Measurements of Pressure

Schaffer

MEASUREMENT PRINCIPLES
|
| |
DIRECT INDIRECT
| |
| | | | |
Mechanical Pressure Liquid lonisation Thermal Viscosity
deformation balance column conductivity
| | | |
Diaphragm Bourdon Bellows Piezo- Resistance ] Gas | | Mercury Hot cathode Cold cathode | | Pirani Spinning
tube / capsule electric barometers rotor gauge
Hydraulic | | Water | | Thermocouple
Capacitance Simple Aneroid Quartz Manganin manometers Bayard-Alpert Penning
] menometer 7] | barometer | | crystal B B
| | Other
Piezo-resistive Spiral liquids Triode Inverted
| strain gauge N ] | Magnetron
Inductive Helical
Frequency Eccentric
- tension | tube




_—
Hydraulic pressure batances -

Mechanical capsule bellows h
Fortin barometers %
=
inductive devices -

Q = Absolute pressure (

Diaphragm dial gauges L
I:n] = Differential pressure

Resonant devices

-
A3 = Gauge pressure ,lh
o Gas pressure balances

swrain gauges L% _

A.f'-

Mon-piston gas pressure balances

Bourdon tube dial gauges YL _
Drcer LS
Differential pressure balances _
Kew pattern barometers L\
ﬁff_ Mercury mano-barometers
_ MNon mercury U -Tube manometers
Quartz Bourdon ube LY w’?!_
Qﬁiﬁ_ Capacitance diaphragm
_ Thermal conductivity (Pirani) gauges
Q ‘— Spinning rotor gauges
m i Cold cathode onisation gauges
E& D Hot cathode ionisation gauges

Measurement Techniques

=10 -5

10 mbar 10 mbar 1 mbar 1000 mbar



Mechanical Gauges

Bourdon gauge (10 mbar to 1 bar)

Bourdon tube
End place

Sector gear

i -
~——e— Pressure inlet

|-



Bourdon tubes Diaphragm springs Bellows

C-shﬁped Helikt:a! Eﬁ}ral [Haph;agm Eaﬁsule

e ke
P P

i\




Capacitance Gauge

(10-* mbar to 100 mbar)

Chemical
Electrode Structure Getter Pump

(Metal on Ceramic) (Absolute Manometers)
Diaphragm Electronics

Baffle : S pan Fot

(j:ﬁ l | Linearity Pot

Measurement (Fx) Side, ~T1f Zero Pot(s)
Connected to System

“_Reference (Pr) Side,
High Yacuum




Thermal Conductivity Gauges

Pirani Gauge (10-* mbar to 1 bar) 1906 Marcello Stefano Pirani

Resistance change of a gas cooled wire is measured with a bridge circuit
under constant joule heating

R,=24.6 ohms




Thermal Conductivity Gauges

depends of gas type

2 4 6 10" 2 4 6 100 2 4 6 10" 2 4 6 102




Thermocouple Gauge
(104 mbar to 1 bar)

Temperature of gas cooled resistive wire is measured via thermocouples

Feedthrough pins

| «—
J

Vacuum
envelope

[P,

Thermocouple

Heater

l

Vacuum
port




Tonisation Gauges
Hot cathode ionisation (10-12 mbar to 102 mbar)

create gas ions by electron bombardment stemming from a hot filament

ION
COLLECTOR

filamefpt emitting electrons

. . to recipient

THERMIONIC » SUPPORTS

EMISSION
FILAMENT

OV +250V +50V




Tonisation Gauges

Penning cold cathode ionisation (1012 mbar to 10-* mbar)

high voltage = gas ionisation > plasma - measurement of ionisation current

\I\\i
WN

Reads the
Vacuum

($)
!
>
o
-
4
z
i
o

AV A AV AvA

W ARRRRRR R

2 RN
Ll

s

g“““““ AW
PEg= D=2 = D=\
-l
.

<1500 Gauss
Magnetic Field

advantages:
rushing in of air in no problem
insensitive to mechanical vibrations




Vacuum Flansch

Seals and Feed Throughs

Leak Detection




Seals and Feed Throughs

Epoxy

i \

/4

Flange for bolting

Fiberglass—epoxy
composite (G-10)

to bottom of 2 : epoxied into top
connector box M of support tube .
/ S Epoxy / assis box
Soldered Stainless-steel
support tube
\ Electrical leads C Nonvacuum-

tight multipin

/ connectors

BNC connectors
Stainless-steel Epoxy-sealed vacuum-
support tube Jj tight lead-through
\ (see expanded view)

with solid-bonded

insulation (not Teflon
tube insulation) C @

Pov

TR

T Thermometer and
sample leads




Seals and Feed Throughs

Connector
box wall

/

Continuous leads
epoxied into tube

QL

Heat-shrink tubing serves
A_—as temporary mold for epoxy

Epoxy

N8N
W

Lip of epoxy around
Vacuum  outside of tube

coupling

brass tube

t

w
3
3
=
o

ANNNNNNNNNNNY 2
R

QNN
NS
5 o\v

‘Shrink onto brass tube by
touching bottom of heat-shrink
4 tubing with soldering iron

N\

SN
SN

N
ORI
S

QeSO

.\‘
S

Soldered into
vacuum-tight flange

SN
NN
SO

=
WA
S

N

LS
NNAY
-y

O

SRS
NN

N
TS

Instrumentation leads

«— with coated insulation
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Indium Seals




Indium Seals
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Indium Seals

Gap

>4

~1

Indium
O-ring

\

External
clamp




Indium Seals

Socket head
clamping screws

/

Indium
Stainless-— O-ring

steel jaws™~

AL LYY

AU AR

7

O-ring holder

Pure indium wire wrapped
around stainless-steel ring,
before being compressed.

=




Leaks and Leak Detection

Indications to have a leak in a cryostat:
oscillating base temperature
higher 1 K pot femperature
higher base temperature
bad vaccum

thermal short




Leaks and Leak Detection

mass spectrometer




Outgasing

Neoprene

Araldite

Cast brass
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Stainless .
steel Mild steel

Aluminum




Leak Test Schemes

d:

D

Helium
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Permeation

Pyroceram
9606

k@‘

Glass

Macor

1720 Glass

97% Alumina

Helium permeation
through ceramics

] I | | ]

12 14 16 18
1000/T (K™




Permeation

A leak + outgasing
pressure

leak

/

outgasing




Cryoliquids




Substance Ty [K] T, [K] T, [K] ' P_ [bar] Latent heat L Vol.%
[kJ/¢€] in air

2252

303
279
245
224
160

110
50
31.8

2.56
0.48
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3He

solid 2He

w
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normal fluid 3He

—
o

critical
point

| | | A~©

0.001 0.01 0.1 1
Temperature T/ K

Pressure p / bar

w
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solid “He

hcp bcc

Lambda line

“He-l

critical
point
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Temperature T [K]
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Thank you for your attention




