CONTENTS

• Basic experimental properties of superconductors
 – Zero resistivity – Meissner effect – Phase diagram – Heat capacity

• Phenomenological description of superconductivity
 – Thermodynamics – Phase coherence and supercurrents – London equation
 – Flux quantization – Energy gap and coherence length – Clean and dirty
 – Type I and type II superconductors – Abrikosov vortices

• Introduction to the BCS theory
 – Electron-electron attraction – The Cooper problem – Model Hamiltonian
 – Bogolubov transformation – Bogolubov quasiparticles – The gap equation
 – Non-uniform superconductors – Bogolubov–de Gennes equations

• Andreev reflection and Andreev bound states
 – Scattering at the NIS interface – Bound states in SNS, SIS junctions
 – CdGM states in vortex cores – Supercurrent with bound states

• Josephson effect
 – DC and AC effect – Shunted junction and washboard potential
 – SQUID – Quantum dynamics
Superconductivity was the first discovered macroscopic quantum phenomenon, where a sizable fraction of particles of a macroscopic object forms a coherent state, described by a quantum-mechanical wave function.

Applications:

- High magnetic fields
- Filtering of radio signals
- Ultra-sensitive magnetic/temperature and other sensors
- Metrology
- Ultra-low-noise amplifiers
- Quantum engineering
- Quantum information processing
DISCOVERY OF SUPERCONDUCTIVITY

Heike Kamerlingh Onnes

Liquefied helium in 1908.

Resistivity of metals when $T \to 0$?

Au, Pt: $\rho(T) = \text{const}$
Below the transition temperature T_c, the resistivity drops to zero.

Latest measurements put bound $\rho < 10^{-23} \Omega \text{ cm}$.

Really zero!

Dirty metals are good superconductors.
At $T < T_c$ the magnetic field is expelled from the superconductor even if the field was applied before reaching T_c.
Superconductivity is destroyed by sufficiently strong electric currents or by the magnetic field above the critical field H_c.

Empirically the dependence of H_c on temperature is described reasonably well by

$$H_c(T) = H_c(0)\left[1 - \left(\frac{T}{T_c}\right)^2\right]$$
THERMODYNAMICS OF THE SUPERCONDUCTING TRANSITION

In the external field $H = H_c$

$$F_n(T) = F_s(T) + \frac{H_c^2(T)}{8\pi}$$

Entropy $S = -\partial F/\partial T$:

$$S_n - S_s = -\frac{H_c}{4\pi} \frac{dH_c}{dT}.$$

Heat capacity $C = T \partial S/\partial T$:

$$C_n - C_s = -\frac{T}{4\pi} \left[H_c \frac{d^2H_c}{dT^2} + \left(\frac{dH_c}{dT} \right)^2 \right].$$

The heat capacity jump at T_c:

$$C_s(T_c) - C_n(T_c) = \frac{T_c}{4\pi} \left(\frac{dH_c}{dT} \right)^2.$$
Heat capacity jumps upward on transition to superconducting state. At $T \ll T_c$ the electronic heat capacity approaches zero exponentially ⇒

Energy gap Δ.
PHASE COHERENCE

Electrons form **pairs**, which are *bosons* and condense to a single state, described by the wave function ψ with the macroscopically coherent phase χ.

Current

$$j_s = \frac{e^*}{2m^*} \left[\psi^* \hat{p} \psi + \psi \hat{p}^\dagger \psi^* \right]$$

with

$$\hat{p} = -i \hbar \nabla - (e^*/c)A.$$

We get for $e^* = 2e$, $m^* = 2m$ and the density of pairs $|\psi|^2 = n_s/2$:

$$j_s = -\frac{(e^*)^2}{m^* c} |\psi|^2 \left(A - \frac{\hbar c}{e^*} \nabla \chi \right) = -\frac{e^2 n_s}{mc} \left(A - \frac{\hbar c}{2e} \nabla \chi \right).$$
THE LONDON EQUATION

Assuming density of superconducting electrons n_s is constant:

$$j_s = -\frac{e^2 n_s}{mc} \left(A - \frac{\hbar c}{2e} \nabla \chi \right) \Rightarrow \text{curl } j_s = -\frac{e^2 n_s}{mc} \text{ curl } A = -\frac{e^2 n_s}{mc} \mathbf{h}.$$

Using the Maxwell equation

$$j_s = (c/4\pi) \text{ curl } \mathbf{h}$$

we get the London equation

$$\mathbf{h} + \lambda_L^2 \text{ curl } \text{ curl } \mathbf{h} = 0,$$

where the London penetration depth

$$\lambda_L = \left(\frac{mc^2}{4\pi n_s e^2} \right)^{1/2}.$$
MEISSNER EFFECT

\[h + \lambda_L^2 \text{curl curl } h = 0 \quad \Rightarrow \quad h = \lambda_L^2 \nabla^2 h \]

\[\text{curl curl } h = \nabla \text{div } h - \nabla^2 h \]

\(S \)

\(h_y \)

\(0 \)

\(\lambda_L \)

\(x \)

\[\frac{\partial^2 h_y}{\partial x^2} - \lambda_L^{-2} h_y = 0 \]

\[h_y = h_y(0) \exp(-x/\lambda_L) \]

Magnetic field penetrates into a superconductor only over distances \(\lambda_L \approx 30 \text{ nm} \)

Typical metal with \(m \sim m_e \) and \(a_0 \sim 4 \text{ Å}, \quad n_s \sim a_0^{-3} \quad \Rightarrow \quad \lambda_L \sim 30 \text{ nm} \)
MAGNETIC FLUX QUANTIZATION

Integrating expression

\[\mathbf{j}_s = -\frac{e^2 n_s}{mc} \left(\mathbf{A} - \frac{\hbar c}{2e} \nabla \chi \right) \]

along a closed contour within a superconductor

\[-\frac{mc}{e^2} \oint n_s^{-1} \mathbf{j}_s \cdot d\mathbf{l} = \int_S \text{curl} \mathbf{A} \cdot d\mathbf{S} - \frac{\hbar c}{2e} \Delta \chi = \Phi - \frac{\hbar c}{2e} 2\pi n \]

\(\Phi \) is the magnetic flux through the contour.

\[\Phi' = \Phi + \frac{4\pi}{c} \oint \lambda_L^2 \mathbf{j}_s \cdot d\mathbf{l} = \Phi_0 n \]

Quantum of magnetic flux

\[\Phi_0 = \frac{\pi \hbar c}{|e|} \approx 2.07 \times 10^{-7} \text{ Oe} \cdot \text{cm}^2. \]

In SI units, \(\Phi_0 = \frac{\pi \hbar}{|e|} = 2.07 \times 10^{-15} \text{T} \cdot \text{m}^2. \)
THE ENERGY GAP AND COHERENCE LENGTH

Energy scale: Energy gap Δ_0

Binding energy of Cooper pair $2\Delta_0$, $\Delta_0 \sim k_B T_c$.

Energy gap (from the heat capacity) $\Delta(T \to 0) = \Delta_0$.

Uncertainty principle: interaction time in the pair $\tau_p \gtrsim \hbar/\Delta_0$.

Length scale: Coherence length ξ_0:

$$\xi_0 \sim \tau_p v_F \sim \frac{\hbar v_F}{\Delta_0}$$
COHERENCE LENGTH AND THE CRITICAL FIELD

Maximum phase gradient \((\nabla \chi)_\text{max} \sim 1/\xi\) sets the maximum supercurrent

\[
\mathbf{j}_s = -\frac{e^2 n_s}{mc} (\mathbf{A} - \frac{\hbar c}{2e} \nabla \chi) \Rightarrow (\mathbf{j}_s)_\text{max} \sim \frac{\hbar n_s e}{m} (\nabla \chi)_\text{max}
\]

Maximum supercurrent is reached when screening the critical field \(H_c\)

\[
(j_s)_\text{max} \sim \left(\frac{c}{4\pi} \right) H_c / \lambda_L
\]

Critical field

\[
H_c \sim \frac{4\pi \lambda_L}{c} \frac{\hbar n_s e}{m\xi} = \frac{\pi \hbar c}{e} \frac{\lambda_L}{\pi \xi} \frac{4\pi n_s e^2}{mc^2} = \frac{\Phi_0}{\pi \xi \lambda_L}
\]

Condensation energy [remember \(\xi_0 \sim \hbar v_F / \Delta_0\)]

\[
F_n(0) - F_s(0) = \frac{H_c^2(0)}{8\pi} \sim \frac{n}{2mv_F^2} \Delta_0^2 \sim [N(0)\Delta_0]\Delta_0
\]

\(N(0) \sim n/E_F\) — density of states, \(E_F = mv_F^2/2\) — Fermi energy
LONDON AND PIPPARD REGIMES

Two length scales: London penetration depth and coherence length.

How do their values compare?

Typical metallic superconductor [like Al] with $T_c = 1 \text{ K}$, the electron density n one per ion, lattice constant $a_0 \sim 4 \text{ Å}:

$$n_s \approx n = a_0^{-3} \approx 4 \cdot 10^{22} \text{ cm}^{-3}, \quad v_F = p_F/m = (\hbar/m)(3\pi^2n)^{1/3} \approx 10^8 \text{ cm/s}$$

$$\xi_0 = \frac{\hbar v_F}{2\pi k_B T_c} \approx 1400 \text{ nm} \gg \lambda_L = \left(\frac{mc^2}{4\pi n_s e^2} \right)^{1/2} \approx 30 \text{ nm}$$

$T \to T_c \quad n_s \to 0 \quad \lambda_L \to \infty$
Non-magnetic impurities (scattering centers) do not affect static properties of a superconductor (like T_c) [Anderson theorem]. But properties connected to the spatial variation of the superconducting state (in particular, supercurrents and coherence length) are strongly affected.

Interaction time $\tau_p \sim \hbar / \Delta_0$.

Clean limit – ballistic motion

$\xi_{\text{clean}} = \xi_0 \sim \tau_p \nu_F \sim \frac{\hbar \nu_F}{\Delta_0}$

Dirty limit – diffusive motion

mean free path ℓ

scattering time $\tau_s = \ell / \nu_F < \tau_p$

diffusion coefficient $D \sim \nu_F^2 \tau_s = \nu_F \ell$

$\xi_{\text{dirty}} = \sqrt{D \tau_p} = \sqrt{\nu_F \ell \hbar / \Delta_0} = \sqrt{\xi_{\text{clean}}} \ell$

In dirty materials $\ell \sim a_0 \ll \lambda_L$ and $\xi_{\text{dirty}} < \lambda_L$
In bulk superconductor magnetic induction $B = H + 4\pi M = 0$.

The magnetization and susceptibility are ideal diamagnetic

$$M = -\frac{H}{4\pi}; \quad \chi = \frac{\partial M}{\partial H} = -\frac{1}{4\pi}$$
In the external field $H < H_c$ the sample is divided to normal and superconducting domains so that in the normal phase magnetic induction $B = H_c$ while in the superconducting domains magnetic field is absent.
Energy change compared to the uniform state at $H = H_c$

$$\Delta F = \frac{H_c^2}{8\pi} \delta : \begin{array}{llll}
\xi \gg \lambda_L & \delta \sim \xi - \lambda_L > 0 & \delta \approx 1.89\xi \\
\xi \ll \lambda_L & \delta \sim -(\lambda_L - \xi) < 0 & \delta \approx -1.104\lambda_L
\end{array}$$

Transition from the positive to the negative energy of the NS boundary is controlled by the Ginzburg-Landau parameter κ:

$$\kappa = \frac{\lambda_L}{\xi}, \quad \text{transition at } \kappa = \frac{1}{\sqrt{2}}.$$
THE GL PARAMETER FROM MATERIAL PARAMETERS

Order-parameter variation scale – coherence (healing) length $\xi(T)$ is *not* the Cooper-pair size ξ_0 (or $\xi_{\text{dirty}} = \sqrt{\xi_0 \ell}$):

$\xi(T)$: gradient energy $[\xi_0] \leftrightarrow$ condensation energy $[T\text{-dependent}]$

In the **clean** limit we have

$$
\xi(T) = \xi_0 \sqrt{\frac{7 \zeta(3)}{12}} \left[1 - \frac{T}{T_c} \right]^{-1/2}, \quad \lambda_L = \frac{c}{4|e|v_F} \sqrt{\frac{3}{\pi N(0)}} \left[1 - \frac{T}{T_c} \right]^{-1/2}
$$

$$
\kappa = \frac{3c}{|e|\hbar} \sqrt{\frac{\pi}{7 \zeta(3) N(0)}} \frac{k_B T_c}{v_F^2} = \frac{3\pi^2 \sqrt{14} \zeta(3)}{e^2 \sqrt{E_F}} \frac{\hbar c k_B T_c}{E_F} \sqrt{\frac{e^2/a_0}{E_F}} \sim 10^3 \frac{k_B T_c}{E_F}.
$$

For usual superconductors $k_B T_c/E_F < 10^{-3} \quad \Rightarrow \quad \kappa \lesssim 1$

For HTSC $k_B T_c/E_F \sim 10^{-1} - 10^{-2} \quad \Rightarrow \quad \kappa \gg 1$

For **dirty** superconductors with $\tau_s/\tau_p \ll 1$: $\kappa_{\text{dirty}} \sim \kappa_{\text{clean}}(\tau_p/\tau_s) \gg 1$
ABRIKOSOV VORTICES

Magnetic field penetrates into type II superconductor in the form of Abrikosov vortices, which are topologically-protected linear defects of the order parameter: Order parameter is zero at the vortex axis and the phase of the order parameter winds by 2π on a loop around the vortex. Each vortex carries a single quantum of magnetic flux Φ_0.

Alexei Abrikosov

\[B = \frac{4\pi M}{H_{c1} c_2 H} \]

\[n_v = \frac{\Phi_0}{\Phi_1} \]
ABRIKOSOV VORTICES

Magnetic field penetrates into type II superconductor in the form of Abrikosov vortices, which are topologically-protected linear defects of the order parameter: Order parameter is zero at the vortex axis and the phase of the order parameter winds by 2π on a loop around the vortex. Each vortex carries a single quantum of magnetic flux Φ_0.

\[B = \frac{4\pi M}{H_{c1}} \]

\[n_v = \frac{\Phi_0}{\Phi_0} \]

- vortex density

Alexei Abrikosov

Diagram showing the penetration of magnetic field into a superconductor with Abrikosov vortices.
\(r > \lambda_L: \quad f = \psi(r)/\psi_{eq} = 1, \quad h \propto \exp(-r/\lambda_L) \)

\(\xi < r < \lambda_L: \quad 1 - f \propto r^{-2}, \quad h \propto \ln(\lambda_L/r) \)

Main vortex energy here: \(\mathcal{F}_v \approx \frac{\Phi_0^2}{16\pi^2\lambda_L^2} \ln \kappa \)

\(r < \xi \) (core): \(f \propto r, \quad h \approx \text{const} \)
PHASE DIAGRAM OF TYPE-II SUPERCONDUCTORS

H_{c1}: vortex energetically favorable

$$\mathcal{F}_v = \frac{1}{4\pi} \Phi_0 H_{c1}$$

$$H_{c1} = \frac{\Phi_0}{4\pi \lambda_L^2} \ln \kappa = H_c \frac{\ln \kappa}{\sqrt{2\kappa}}$$

H_c: thermodynamic

$$H_c = \frac{\Phi_0}{2\sqrt{2\pi} \lambda_L \xi}$$

H_{c2}: no stable SC regions

$$H_{c2} = \frac{\Phi_0}{2\pi \xi^2} = H_c \sqrt{2\kappa}$$

For $\xi \sim 2$ nm one gets $H_{c2} \sim 80$ T.
Lorentz force acting on vortex from electric current

\[\mathbf{f}_L = \frac{\Phi_0}{c} [\mathbf{j}^{\text{ex}} \times \mathbf{b}] . \]

Per unit volume we have

\[\mathbf{F}_L = n_v \mathbf{f}_L = c^{-1} [\mathbf{j}^{\text{ex}} \times (n_v \Phi_0 \mathbf{b})] = c^{-1} [\mathbf{j}^{\text{ex}} \times \mathbf{B}] . \]

If vortex moves with friction \(\eta \): \(\mathbf{v}_L = \mathbf{f}_L / \eta \)

\[\mathbf{E} = c^{-1} [\mathbf{B} \times \mathbf{v}_L] = (\Phi_0 B / \eta c^2) \mathbf{j}^{\text{ex}} \]

and resistivity

\[\rho = E / j^{\text{ex}} = \Phi_0 B / \eta c^2 . \]

Magnetic field applications require pinning!
The BCS Theory

John Bardeen Leon Cooper John Robert Schrieffer

Nikolai Bogolubov
EXCITATIONS IN LANDAU FERMI LIQUID

At $T = 0$ states with $p < p_F$, $E < E_F$ are filled, others are empty.

$$n = \frac{p_F^3}{3\pi^2\hbar^3}, \quad p_F \sim \hbar n^{1/3} = \hbar/a_0$$

$$\epsilon_p = \begin{cases}
\frac{p^2}{2m} - E_F, & p > p_F \\
E_F - \frac{p^2}{2m}, & p < p_F
\end{cases}$$

Constant density of states $N(\epsilon_p = 0) = N(p = p_F) = N(0) = \frac{m^* p_F}{2\pi^2\hbar^3}$.
Atomic energy scale

\[M \omega_D^2 a_0^2 \sim \frac{e^2}{a_0} \sim \frac{(\hbar/a_0)^2}{m} \]

Debye frequency

\[\omega_D \sim \frac{E_F}{\hbar} \sqrt{\frac{m}{M}} \]

Length of electron tail

\[\sim v_F \omega_D^{-1} \sim \sqrt{M/m} a_0 \sim 300a_0 \quad \Rightarrow \quad \mathbf{p}_1 \approx \pm \mathbf{p}_2 \quad \Rightarrow \quad \mathbf{p}_1 \approx -\mathbf{p}_2 \]
ELECTRON ATTRACTION: Model

\[\langle II| H_{e-ph-e}|I \rangle = \frac{2|W_q|^2}{\hbar} \frac{\omega_q}{\omega^2 - \omega_q^2} < 0 \]

attraction if \(\omega < \omega_q \sim \omega_D \)

Does not depend on the directions of \(\mathbf{p}_1, \mathbf{p}_2 \) \(\Rightarrow \) orbital momentum \(L = 0 \)

\(\Rightarrow \) opposite spins

Model: Two electrons with opposite momenta and spins attract each other with the constant amplitude \(-W\) if \(\epsilon_{p_1} < E_c \) and \(\epsilon_{p_2} < E_c \) (where \(E_c \sim \hbar \omega_D \)) and do not interact otherwise.
Schrödinger equation for the pair wave function $\Psi(r_1, r_2)$

$$\left[\hat{H}_e(r_1) + \hat{H}_e(r_2) + W(r_1 - r_2) \right] \Psi(r_1, r_2) = E \Psi(r_1, r_2).$$

Expansion in single-particle wave functions

$$\Psi(r_1, r_2) = \sum_p c_p \psi_{p\uparrow}(r_1) \psi_{-p\downarrow}(r_2) = \sum_p a_p e^{ipr/h} = \Psi(r), \quad r = r_1 - r_2.$$

$$\psi_{p\uparrow}(r_1) \propto e^{ipr_1/h}, \quad \psi_{-p\downarrow}(r_2) \propto e^{-ipr_2/h}, \quad a_p = \int \Psi(r) e^{-ipr/h} d^3r$$
THE COOPER PROBLEM: Fourier transformed equation

Schrödinger equation becomes

\[2\epsilon_p a_p + \sum_{p'} W_{p,p'} a_{p'} = E a_p. \]

Interaction model:

\[W_{p,p'} = \begin{cases}
-W, & \epsilon_p \text{ and } \epsilon_{p'} < E_c, \\
\text{i.e. } p_F - E_c/v_F < p(\text{and } p') < p_F + E_c/v_F \\
0, & \text{otherwise}
\end{cases} \]

We thus have

\[a_p = -\frac{W}{E - 2\epsilon_p} \sum_{p', \epsilon_{p'} < E_c} a_{p'}, \quad a_{p'} = -\frac{WC}{E - 2\epsilon_p} \]

\[-\frac{1}{W} = \sum_{p, \epsilon_p < E_c} \frac{1}{E - 2\epsilon_p} \equiv \Phi(E) \]
THE COOPER PROBLEM: Bound state

Bound state with $E = E_b < 0$

$$\frac{1}{W} = \sum_{p, \epsilon_p < E_c} \frac{1}{2\epsilon_p - E_b}.$$

Sum over momentum \rightarrow the integral over energy:

$$\frac{1}{W} = 2N(0) \int_0^{E_c} \frac{d\epsilon_p}{2\epsilon_p + |E_b|} = N(0) \ln \left(\frac{|E_b| + 2E_c}{|E_b|} \right).$$

From this equation we obtain

$$|E_b| = \frac{2E_c}{e^{1/N(0)W} - 1}.$$

For weak coupling, $N(0)W \ll 1$, we find

$$|E_b| = 2E_c e^{-1/N(0)W}.$$

For strong coupling, $N(0)W \gg 1$,

$$|E_b| = 2N(0)WE_c.$$
THE BCS MODEL: Non-interacting Hamiltonian

Non-interacting particles at $k > k_F$ and holes at $k < k_F$

$$H_0 = \sum_{k\sigma, k > k_F} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + \sum_{k\sigma, k < k_F} \epsilon_k h_{k\sigma}^\dagger h_{k\sigma}.$$

But $h_{k\sigma}^\dagger = c_{-k,-\sigma}$ and $h_{k\sigma} = c_{-k, -\sigma}^\dagger$ and we have

$$H_0 = \sum_{k\sigma, k > k_F} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + \sum_{k\sigma, k < k_F} \epsilon_k c_{k\sigma} c_{k\sigma}^\dagger$$

$$= \sum_{k\sigma, k > k_F} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} - \sum_{k\sigma, k < k_F} \epsilon_k c_{k\sigma}^\dagger c_{k\sigma} + \sum_{k\sigma, k < k_F} \epsilon_k = \sum_{k\sigma} \xi_k c_{k\sigma}^\dagger c_{k\sigma} + E_0.$$

Here we defined

$$\xi_k = \text{sign}(k - k_F) \epsilon_k = \frac{\hbar^2 k^2}{2m} - E_F \approx \hbar v_F (k - k_F).$$
THE BCS MODEL: Pairing interaction

Interaction $(k', -k') \rightarrow (k, -k)$ without affecting the quasiparticle spin.

$$H = \sum_{k\sigma} \xi_k c_{k\sigma}^\dagger c_{k\sigma} + \sum_{kk'} W_{kk'} [c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger \underbrace{A}_{A} \underbrace{c_{-k'\downarrow} c_{k'\uparrow}}_{B}]$$

Mean-field approximation: For two operators A and B

$$AB = \langle A \rangle B + A \langle B \rangle - \langle A \rangle \langle B \rangle + (A - \langle A \rangle)(B - \langle B \rangle)$$

The error is quadratic in fluctuations, which are relatively small in a macroscopic system.
THE BCS MODEL: Hamiltonian

\[H_{\text{BCS}} = \sum_{k\sigma} \xi_k c_{k\sigma}^{\dagger} c_{k\sigma} + \sum_k \left(\Delta_k^{\ast} c_{-k\downarrow} c_{k\uparrow} + \Delta_k c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} - \Delta_k \left(c_{k\uparrow}^{\dagger} c_{-k\downarrow}^{\dagger} \right) \right) \]

We defined \(\Delta_k = \sum_{k'} W_{kk'} \langle c_{-k'\downarrow} c_{k'\uparrow} \rangle \), thus \(\Delta_k^{\ast} = \sum_{k'} W_{kk'} \langle c_{k'\uparrow}^{\dagger} c_{-k'\downarrow}^{\dagger} \rangle \)

We want to diagonalize it with Bogolubov transformation

\[H_{\text{BCS}} = \sum_{k\sigma} E_k \gamma_{k\sigma}^{\dagger} \gamma_{k\sigma} + E_{\text{cond}} \]

Here \(\gamma_{k\sigma}^{\dagger} \) and \(\gamma_{k\sigma} \) are new Bogolubov quasiparticles with spectrum \(E_k \).

New operators mix particles and holes:

\[\gamma_{k\uparrow}^{\dagger} = u_k c_{k\uparrow}^{\dagger} + v_k h_{k\uparrow}^{\dagger} \]

\[\gamma_{-k\downarrow} = u_k^{\ast} c_{-k\downarrow} - v_k^{\ast} h_{-k\downarrow} \]

\[\{ \gamma_{k\sigma}, \gamma_{k'\sigma'}^{\dagger} \} = \delta_{kk'} \delta_{\sigma\sigma'} \]

\[\{ \gamma_{k\sigma}, \gamma_{k'\sigma'} \} = \{ \gamma_{k\sigma}^{\dagger}, \gamma_{k'\sigma'}^{\dagger} \} = 0 \implies |u_k|^2 + |v_k|^2 = 1 \]
THE BCS MODEL: Diagonal form

The desired form is

\[H_{BCS} = \sum_{k\sigma} E_k \gamma_{k\sigma}^\dagger \gamma_{k\sigma} + E_{\text{cond}} \]

with

\[E_k = \sqrt{\xi_k^2 + |\Delta_k|^2} \]

and

\[|u_k|^2 = \frac{1}{2} \left(1 + \frac{\xi_k}{E_k} \right) \]
\[|v_k|^2 = \frac{1}{2} \left(1 - \frac{\xi_k}{E_k} \right) \]
BOGOLUBOV QUASIPARTICLES: Energy spectrum

\[E_p = \sqrt{\epsilon_p^2 + |\Delta|^2} \]
\[\approx \sqrt{v_F^2(p - p_F)^2 + |\Delta|^2} \]

Landau criterion \(v_c = \min(E_p/p) \approx |\Delta|/p_F \)
BOGOLUBOV QUASIPARTICLES: Group velocity

For a given energy $E > |\Delta|$ there are two possible values of ξ_k:

$$\xi_k^\pm = \pm \sqrt{E^2 - |\Delta|^2} = \hbar v_F (k_\pm - k_F), \quad k_\pm = k_F \pm \frac{1}{\hbar v_F} \sqrt{E^2 - |\Delta|^2}.$$

$\xi_k^+, k_+ \text{ — particles, } \xi_k^-, k_- \text{ — holes}$

$$v_g = \frac{dE}{dp} = \frac{\hat{k} \, dE}{\hbar \, dk}, \quad v_g^{\text{particles}} = v_F \frac{\sqrt{E^2 - |\Delta|^2}}{E} \hat{k}, \quad v_g^{\text{holes}} = -v_F \frac{\sqrt{E^2 - |\Delta|^2}}{E} \hat{k}.$$
Since $E_k = \sqrt{\epsilon_k^2 + |\Delta|^2}$ we have

\[
\sum_k \to N(0) \int d\epsilon_k = N(0) \int d\left(\sqrt{E_k^2 - |\Delta|^2}\right) = N(0) \int \frac{E_k dE_k}{\sqrt{E_k^2 - |\Delta|^2}}.
\]

The density of states in the superconductor is

\[
N_s(E) = \begin{cases}
0, & E \leq |\Delta|, \\
N(0) \frac{E}{\sqrt{E^2 - |\Delta|^2}}, & E > |\Delta|.
\end{cases}
\]
SELF-CONSISTENCY EQUATION

We insert Bogolubov transformation \([c_{k\sigma} \rightarrow \gamma_{k\sigma} \rightarrow (u_k, v_k) \rightarrow (\Delta_k, E_k)]\) into the gap definition and obtain equation for \(\Delta_k\) [remember also \(E_k(\Delta_k)\)]

\[
\Delta_k = \sum_{k'} W_{kk'} \langle c_{-k'} \downarrow c_{k'} \uparrow \rangle = - \sum_{k'} W_{kk'} \frac{\Delta_{k'}}{2E_{k'}} [1 - 2f(E_{k'})]
\]

We used Fermi distribution

\[
\langle \gamma_{k\sigma}^\dagger \gamma_{k\sigma} \rangle = f(E_k), \quad f(E) = \frac{1}{e^{E/k_B T} + 1}.
\]

For our model interaction \(k\) dependence is simple

\[
W_{kk'} = \begin{cases}
-W, & \epsilon_k \text{ and } \epsilon_{k'} < E_c \\
0, & \text{otherwise}
\end{cases}
\]

\[
\Delta_k = \begin{cases}
\Delta, & E_k < \sqrt{E_c^2 + |\Delta|^2} \approx E_c \\
0, & \text{otherwise}
\end{cases}
\]

With these substitutions the gap equation becomes

\[
\Delta = W \Delta \sum_{k, \epsilon_k < E_c} \frac{1 - 2f(E_k)}{2E_k} = \Delta \frac{W}{2} \sum_{k, \epsilon_k < E_c} \frac{1}{E_k(\Delta)} \tanh \frac{E_k(\Delta)}{2k_B T}
\]

It has a trivial solution \(\Delta = 0\) corresponding to the normal metal.
THE GAP EQUATION

\[\Delta_0 - |\Delta| \propto \exp(-\Delta_0 / k_B T) \]

\[\Delta_0 = (\pi / \gamma) k_B T_c \approx 1.76 k_B T_c \]

\[k_B T_c = (2 \gamma / \pi) E_c e^{-1/\lambda} \approx 1.13 E_c e^{-1/\lambda} \]

\[|\Delta| \propto (1 - T / T_c)^{1/2} \rightarrow \]

\[1 = \lambda \int_{|\Delta|}^{E_c} \frac{dE}{\sqrt{E^2 - |\Delta|^2}} \tanh \frac{E}{2k_B T} \]

Interaction constant \(\lambda = N(0) W \)

\(\lambda \sim 0.1 - 0.3 \) in practical superconductors
HEAT CAPACITY

Only quasiparticles contribute to the entropy

\[S = -k_B \sum_{k\sigma} \left[(1 - f(E_k)) \ln(1 - f(E_k)) + f(E_k) \ln f(E_k) \right] \]

\[f(E_k) = \frac{1}{e^{E_k/k_B T} + 1}, \quad E_k = \sqrt{\xi_k^2 + |\Delta_k(T)|^2} \]

The heat capacity

\[C = -T \frac{dS}{dT} = \frac{2}{k_B} \sum_k f(E_k) (1 - f(E_k)) \left[\frac{E_k^2}{T^2} - \frac{1}{2T} \frac{d|\Delta_k|^2}{dT} \right] \]

For \(T \ll T_c \) we have \(E \approx \Delta \gg k_B T \) and \(f(E) \approx e^{-E/k_B T} \).

As a result

\[C = 2\sqrt{2\pi} k_B N(0) \Delta_0 \left(\frac{\Delta_0}{k_B T} \right)^{3/2} \exp\left(-\frac{\Delta_0}{k_B T}\right). \]
Real-space quasiparticle creation and annihilation operators

\[\Psi^\dagger (\mathbf{r}, \sigma) = \sum_k e^{-i\mathbf{kr}} c_{k\sigma}^\dagger, \quad \Psi (\mathbf{r}, \sigma) = \sum_k e^{i\mathbf{kr}} c_{k\sigma} \]

Non-interacting Hamiltonian corresponds to

\[H_0 = \sum_{k\sigma} \xi_k c_{k\sigma}^\dagger c_{k\sigma} \rightarrow H_0 = \sum_\sigma \int d^3 \mathbf{r} \, \Psi^\dagger (\mathbf{r}, \sigma) \hat{H}_e \Psi (\mathbf{r}, \sigma) \]

where the free particle Hamiltonian

\[\xi_k = \frac{\hbar^2 k^2}{2m} - E_F \rightarrow \hat{H}_e = \frac{1}{2m} \left(-i \hbar \nabla - \frac{e}{c} \mathbf{A} \right)^2 + U(\mathbf{r}) - \mu, \]

which accounts for the magnetic field through the vector potential \(\mathbf{A} \) and includes some non-magnetic potential \(U(\mathbf{r}) \).
BCS THEORY IN COORDINATE SPACE

Non-interacting → add interaction ($\Psi^\dagger \Psi^\dagger \Psi \Psi$) → mean-field theory

→ diagonalize with Bogolubov transformation

$$\Psi(\mathbf{r} \uparrow) = \sum_k \left[u_k(\mathbf{r}) \gamma_k \uparrow - v_k^*(\mathbf{r}) \gamma_{-k} \uparrow \right]$$

$$\Psi^\dagger(\mathbf{r} \downarrow) = \sum_k \left[u_k^*(\mathbf{r}) \gamma_{-k} \uparrow + v_k(\mathbf{r}) \gamma_k \uparrow \right]$$

Here k can be any enumeration of states, not necessarily wave vector.

[For uniform case $u_k(\mathbf{r}) = u_k e^{ik\mathbf{r}}$ and $v_k(\mathbf{r}) = v_k e^{ik\mathbf{r}}$]

+ completeness/orthogonality conditions on $u_k(\mathbf{r})$ and $v_k(\mathbf{r})$ from Fermi commutation relations for Ψ and γ.
BOGOLUBOV – DE GENNES EQUATIONS

Diagonalization condition

\[
\begin{cases}
\hat{H}_e u_k(r) + \Delta(r) v_k(r) = E_k u_k(r) \\
\Delta^*(r) u_k(r) - \hat{H}_e^* v_k(r) = E_k v_k(r)
\end{cases}
\]

\[
\hat{H}_e = \frac{1}{2m} \left(-i\hbar \nabla - \frac{e}{c} A \right)^2 + U(r) - \mu
\]

Self-consistency equation

\[
\Delta(r) = W \sum_{k, \epsilon_k < E_c} u_k(r) v_k^*(r) \left[1 - 2 f(E_k) \right]
\]

+ completeness/orthogonality conditions on \(u_k(r) \) and \(v_k(r) \)

+ Maxwell equations to connect current and field
Andreev reflection

Alexander Andreev

Andreev reflection: A phenomenon in superconductivity and quantum physics, often related to the interaction between fermions and the superconducting gap parameter Δ. The diagram illustrates a particle and hole moving through a superconducting interface, showing the reflection process that occurs due to the superconducting gap Δ. The x-axis represents the spatial coordinate and the Δ-axis represents the superconducting gap parameter.
MODEL OF NS(NIS) INTERFACE

Bogolubov – de Gennes equations

\[-\frac{\hbar^2}{2m} \left(\nabla - \frac{ie}{\hbar c} A \right)^2 u(\mathbf{r}) + [U_{\text{ex}}(\mathbf{r}) - E_F] u(\mathbf{r}) + \Delta(\mathbf{r}) v(\mathbf{r}) = \epsilon u(\mathbf{r}),\]

\[\frac{\hbar^2}{2m} \left(\nabla + \frac{ie}{\hbar c} A \right)^2 v(\mathbf{r}) - [U_{\text{ex}}(\mathbf{r}) - E_F] v(\mathbf{r}) + \Delta^*(\mathbf{r}) u(\mathbf{r}) = \epsilon v(\mathbf{r}).\]

Use uniform bulk solutions on left and right

Join \((u, v, \partial_x u, \partial_x v)\) at the interface

\[U_{\text{ex}}(\mathbf{r}) = I \delta(x)\]
Incident and Reflected Quasiparticles

Incident particle excitation with energy $\epsilon > |\Delta|$

Amplitudes (for $I = 0$)

$a = A^-/A^+, \quad b = 0$
$c = 1/A^+, \quad d = 0$

$$A^\pm = \frac{1}{\sqrt{2}} \left(1 \pm \frac{\sqrt{\epsilon^2 - |\Delta|^2}}{\epsilon} \right)^{1/2}$$

$$k^{\pm N} = k_F \pm \frac{\epsilon}{\hbar v_F}$$

$$k^{\pm S} = k_F \pm \frac{\sqrt{\epsilon^2 - |\Delta|^2}}{\hbar v_F}$$
SUBGAP STATES

For an excitation coming from the normal side with $\epsilon < |\Delta|$

Andreev reflection probability

$$|a|^2 = |A^- / A^+|^2 = 1$$

$$A^\pm = \frac{1}{\sqrt{2}} \left(1 \pm i \frac{\sqrt{|\Delta|^2 - \epsilon^2}}{\epsilon} \right)^{1/2}$$
\[\Delta = |\Delta| e^{-i\phi/2} \]

\[\epsilon < |\Delta| \]

\[\epsilon = \mp |\Delta| \cos \frac{\phi}{2} \]
Bogolubov – de Gennes equations possess an important property: If \(\begin{pmatrix} u(r) \\ v(r) \end{pmatrix} \) is a solution for the energy \(\epsilon \), then
\[\begin{pmatrix} v(r)^* \\ -u(r)^* \end{pmatrix} \]
is a solution for the energy \(-\epsilon \).

Thus formally we can introduce negative energies and “Dirac sea” of excitations.
SUPERCONDUCTOR–INSULATOR–SUPERCONDUCTOR (SIS) CONTACT

No barrier, $\mathcal{T} = 1$

Barrier, $\mathcal{T} < 1$

Conduction channel transmission coefficient \mathcal{T}

$$
\frac{1}{R_N} = \frac{\mathcal{T}}{R_0}, \quad \text{quantum of resistance } R_0 = \frac{\pi \hbar}{e^2} \approx 12.9 \text{ k\Omega}
$$
Andreev reflection

Radial quantum number n ($n_{\text{max}} \sim a/\xi$).

Angular momentum $\mu = b p_\perp$, quantized.

$$\mu/\hbar = \begin{cases} m + 1/2, & \text{s-wave superconductors} \\ m, & \text{superfluid } ^3\text{He} \end{cases}$$

Minigap $\omega_0 \sim \frac{\Delta}{a p_F} \sim \frac{1}{\hbar} \frac{\Delta^2}{E_F} \ll \frac{\Delta}{\hbar}$.

Anomalous (crossing zero) branch $n = 0$.

BOUND FERMION STATES IN THE VORTEX CORE
Caroli, de Gennes, Matricon 1964
SUPERCURRENT VIA ANDREEV BOUND STATES

-2|e| \[\rightarrow\] penetrating particle \[\rightarrow\] annihiliated particle

bound state: particle \[\overset{v_g}{\rightarrow}\] \[\overset{p}{\rightarrow}\]

bound state: hole \[\overset{v_g}{\rightarrow}\] \[\overset{p}{\rightarrow}\]

annihiliated hole \[\overset{p}{\rightarrow}\] Cooper pair

\[\overset{-|e|}{\rightarrow}\] \[\overset{+|e|}{\rightarrow}\]
SUPERCURRENT IN THE POINT CONTACT

For the contact with resistance R_N in the normal state supercurrent is

$$I_s = \frac{\pi |\Delta| \sin(\phi/2)}{eR_N} \tanh \frac{|\Delta| \cos(\phi/2)}{2k_B T}$$

\begin{align*}
T \ll T_c : & \quad I_s \approx I_c \sin(\phi/2) \ \text{sign} \cos(\phi/2) \\
I_c &= \frac{\pi |\Delta|}{eR_N} \\
T \to T_c : & \quad I_s \approx I_c \sin(\phi) \\
I_c &= \frac{\pi |\Delta|^2}{4k_B T eR_N}
\end{align*}
Josephson effect and weak links

Brian Josephson

DC Josephson effect

\[I_s = I_c \sin \phi \]

\(I_c \) is the critical Josephson current

AC Josephson effect

\[\hbar \frac{d\phi}{dt} = 2eV \]
WEAKLY COUPLED SUPERCONDUCTORS (Feynman model)

Wave functions of the Cooper-pair condensate are uniform

\[\psi_1 = N_1^{1/2} e^{i \chi_1}, \quad \psi_2 = N_2^{1/2} e^{i \chi_2} \]

\(N_1, N_2 \) – number of Cooper pairs.

When no coupling \(\psi_\alpha = \text{const} (t) \)

\[i \hbar \frac{\partial \psi_\alpha}{\partial t} = E_\alpha \psi_\alpha = 0 \Rightarrow E_\alpha = 0, \quad \alpha = 1, 2 \]

With coupling \(-K\) between the superconductors

\[i \hbar \frac{\partial \psi_1}{\partial t} = (E_1 + e^* V / 2) \psi_1 - K \psi_2 \]

\[i \hbar \frac{\partial \psi_2}{\partial t} = (E_2 - e^* V / 2) \psi_2 - K \psi_1 \]

Here \(e^* = 2e \) is the charge of the Cooper pair.
We obtain
\[\hbar \frac{dN_1}{dt} = -2K \sqrt{N_1 N_2} \sin(\chi_2 - \chi_1)\]
\[\hbar \frac{dN_2}{dt} = 2K \sqrt{N_1 N_2} \sin(\chi_2 - \chi_1)\]

This gives the charge conservation \(N_1 + N_2 = \text{const}\) together with the relation

\[I_s = I_c \sin \phi\]

where

\[I_s = e^* \frac{dN_2}{dt} = -e^* \frac{dN_1}{dt}\]

is the current flowing from the first into the second electrode,

\[I_c = 4eK \sqrt{N_1 N_2}/\hbar\]

is the critical Josephson current, while \(\phi = \chi_2 - \chi_1\) is the phase difference.
AC JOSEPHSON EFFECT

For phases we find

\[
\hbar N_2 \frac{d\chi_2}{dt} = eVN_2 + K \sqrt{N_1 N_2} \cos(\chi_2 - \chi_1)
\]

\[
\hbar N_1 \frac{d\chi_1}{dt} = -eVN_1 + K \sqrt{N_1 N_2} \cos(\chi_2 - \chi_1)
\]

Subtracting we get

\[
\hbar (N_2 - N_1) \frac{d(\chi_2 - \chi_1)}{dt} = 2eV(N_2 - N_1)
\]

or

\[
\hbar \frac{d\phi}{dt} = 2eV
\]
CAPACITIVELY AND RESISTIVELY SHUNTED JUNCTION

\[I = C \frac{\partial V}{\partial t} + \frac{V}{R} + I_c \sin \phi, \quad V = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t} \]

\[I = \frac{\hbar C}{2e} \frac{\partial^2 \phi}{\partial t^2} + \frac{\hbar}{2eR} \frac{\partial \phi}{\partial t} + I_c \sin \phi \]

Mechanical analogue:

\[M \frac{\partial^2 \phi}{\partial t^2} = -\eta \frac{\partial \phi}{\partial t} - \frac{\partial U(\phi)}{\partial \phi} \]

Particle with coordinate \(\phi \) and with the “mass” \(M = \frac{\hbar^2 C}{4e^2} = \frac{\hbar^2}{8E_C} \)

Medium with a viscosity \(\eta = \frac{\hbar^2}{4e^2 R} = \frac{\hbar^2}{8E_C RC} \)

Potential \(U(\phi) = E_J (1 - \cos \phi) - (\hbar I/2e)\phi = E_J (1 - \cos \phi - \phi I/I_c) \)

\(E_J = \frac{\hbar I_c}{2e} \)
WASHBOARD POTENTIAL

\[U(\phi) = E_J (1 - \cos \phi - \phi I/I_c), \quad E_J = \frac{\hbar I_c}{2e} \]

Small oscillations around the minimum:

\[1 - \cos \phi = 2 \sin^2(\phi/2) \approx \frac{\phi^2}{2}, \quad U(\phi) \approx \frac{E_J \phi^2}{2} \]

Plasma frequency

\[\omega_p = \sqrt{\frac{E_J}{M}} = \frac{\sqrt{8E_J E_C}}{\hbar} \]

Quality factor

\[Q = \omega_p RC \]
The effective kinetic inductance of the Josephson junction

\[L_J = \frac{\hbar c^2}{2eI_c} \]

Critical current \(I_c \) depends e.g. on temperature \(\Rightarrow \) detectors.

Nonlinear inductance at large \(\phi \).
Let us consider the case when the constant voltage V is applied to the junction. In this case

$$\frac{\partial \phi}{\partial t} = \frac{2e}{\hbar} V = \omega_J = \text{const}, \quad \phi = \phi_0 + \omega_J t$$

Total current

$$I = \frac{V}{R} + I_c \sin(\phi_0 + \omega_J t)$$

and the average current has simple ohmic behavior for any damping

$$\bar{I} = \frac{V}{R}.$$

Thus for observation of non-trivial dynamics of Josephson junctions the current bias is essential.
DYNAMICS OF JOSEPHSON JUNCTIONS

$$\omega_p^{-2} \frac{\partial^2 \phi}{\partial t^2} + Q^{-1} \omega_p^{-1} \frac{\partial \phi}{\partial t} + \sin \phi = \frac{I}{I_c}$$

Large damping

$$Q^{-1} \omega_p^{-1} \gg \omega_p^{-2} \omega_J \Rightarrow Q = RC \omega_p \ll \omega_p / \omega_J \Rightarrow RC \ll \omega_J^{-1}$$

$$\Rightarrow \text{no inertia (capacitance)}$$

Small damping

$$\Rightarrow \text{hysteretic behavior}$$
Small Q (no C) – exact solution:

$$\bar{V} = R\sqrt{I^2 - I_c^2}$$

Large Q: rapid slide down with almost constant voltage $V \approx \bar{V}$.

Expanding for small oscillations of phase

$$\phi = \omega_J t + \delta\phi(t), \quad \omega_J = 2e\bar{V}/\hbar, \quad \delta\phi \ll 1$$

leads to

$$\bar{V} = IR, \quad I_r \sim I_c/Q$$
THERMAL FLUCTUATIONS: OVERDAMPED JUNCTION

\[P_\pm = \omega_a \exp \left[- \frac{U_\pm}{k_B T} \right] \]

\[= \omega_a \exp \left[- \frac{U_0 \mp (\pi \hbar I / 2e)}{k_B T} \right] \]

\[U_0 \approx 2E_J \text{ for } I \ll I_c \]

\[\bar{V} = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t} = \frac{\hbar}{2e} 2\pi (P_+ - P_-) \]

\[= IR \frac{E_J}{k_B T} \exp \left(- \frac{2E_J}{k_B T} \right) \]
SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES

dc SQUID:
\[j_s = -\frac{e^2 n_s}{mc} \left(A - \frac{\hbar c}{2e} \nabla \chi \right) = 0 \]

\[\chi_3 - \chi_1 + \chi_2 - \chi_4 - \frac{2e}{\hbar c} \left(\int_1^3 A \cdot dl + \int_4^2 A \cdot dl \right) = 0 \]

\[\chi_2 - \chi_1 - (\chi_4 - \chi_3) = \frac{2e}{\hbar c} \int_{1342} A \cdot dl = \frac{2\pi \Phi}{\Phi_0} \]

Total current
\[I = I_a + I_b = I_c \sin \phi_a + I_c \sin \phi_b = 2I_c \cos \left(\frac{\pi \Phi}{\Phi_0} \right) \sin \left(\phi_a - \frac{\pi \Phi}{\Phi_0} \right) \]

The maximum current depends on the magnetic flux through the loop
\[I_{c,SQUID} = 2 \left| I_c \cos \left(\frac{\pi \Phi}{\Phi_0} \right) \right| \]
INFLUENCE OF THE SQUID INDUCTANCE

Extra flux from the circulating current

\[I_{\text{circ}} = \frac{I_b - I_a}{2} = \frac{I_c}{2} \left[\sin \left(\phi_a - \frac{2\pi \Phi}{\Phi_0} \right) - \sin \phi_a \right] \]

in the SQUID loop

\[\Phi = \Phi_{\text{ext}} + \frac{L I_{\text{circ}}}{c} = \Phi_{\text{ext}} - \beta_L \frac{\Phi_0}{2\pi} \sin \left(\frac{\pi \Phi}{\Phi_0} \right) \cos \left(\phi_a - \frac{\pi \Phi}{\Phi_0} \right) \]

Dimensionless parameter \(\beta_L = \frac{2eLI_c}{\hbar c^2} = \frac{L}{L_J} \gtrsim 1 \) in practice

Together with

\[I = 2I_c \cos \left(\frac{\pi \Phi}{\Phi_0} \right) \sin \left(\phi_a - \frac{\pi \Phi}{\Phi_0} \right) \]

determines maximum current
SHAPIRO STEPS

Microwave irradiation of the junction \(V = V_0 + V_1 \cos(\omega t) \) and

\[
\phi = \frac{2e}{\hbar} \int_0^t V(t') \, dt' = \phi_0 + \omega_J t + a \sin(\omega t), \quad \omega_J = \frac{2e}{\hbar} V_0, \quad a = \frac{2e}{\hbar} \frac{V_1}{\omega}
\]

The supercurrent

\[
I = I_c \sin \phi = I_c \sum_{n=-\infty}^{\infty} (-1)^n J_n(2eV_1/\hbar\omega) \sin(\phi_0 + \omega_J t - n\omega t)
\]

When \(\omega_J = n\omega \), i.e. \(V_0 = n(\hbar\omega/2e) \)

the supercurrent has a dc component \(I_n = I_c J_n(2eV_1/\hbar\omega) \sin(\phi_0 + \pi n) \).
QUANTUM DYNAMICS OF JOSEPHSON JUNCTIONS

Analogy

Josephson junction ↔ particle in the washboard potential
can be extended to quantum-mechanical description.
If φ is the coordinate of the particle, then the momentum operator is

\[\hat{p}_\phi = -i \hbar \frac{\partial}{\partial \phi} \]

The Shrödinger equation for the wave function Ψ is

\[\hat{\mathcal{H}} \Psi = \left[\frac{\hat{p}_\phi^2}{2M} + U(\phi) \right] \Psi = E \Psi \]

with

\[M = \frac{\hbar^2 C}{4e^2} = \frac{\hbar^2}{8E_C}, \quad U(\phi) = E_J (1 - \cos \phi) - (\hbar I / 2e)\phi \]

Thus the Hamiltonian is

\[\hat{\mathcal{H}} = -4E_C \frac{\partial^2}{\partial \phi^2} + E_J (1 - \cos \phi - \phi I / I_c) \]
REQUIREMENTS FOR JUNCTION PARAMETERS

Kinetic energy ↔ The charging energy of the capacitor

The operator of charge \hat{Q} on the capacitor:

$$\frac{\hat{p}_\phi^2}{2M} = \frac{\hat{Q}^2}{2C}, \quad \hat{Q} = -2ie \frac{\partial}{\partial \phi}, \quad [\hat{Q}, \phi]_- = \frac{2e}{\hbar} [\hat{p}_\phi, \phi]_- = -2ie$$

Quantum uncertainty in phase $\Delta \phi$ and in charge ΔQ: $\Delta \phi \Delta Q \sim 2e$.

Effects for $Q \sim e$ are important:

$$E_C = \frac{e^2}{2C} \gg k_B T, \quad C = \frac{\epsilon A}{4\pi d} \sim \frac{10 \ (100 \text{ nm})^2}{4\pi \cdot 1 \text{ nm}} \sim 10^{-15} \text{ F} \quad \Rightarrow \quad T \ll 1 \text{ K}$$

$$E_C \gg \frac{\hbar}{\Delta t} = \frac{\hbar}{RC} \quad \Rightarrow \quad R \gg \frac{2\hbar}{e^2} \sim R_0 = \frac{\pi \hbar}{e^2}$$

Circuit diagram:

$C_{ext} \ll C, \quad R_0 \ll R_{ext} \ll R$
Rapidly developing field. One of key players in quantum engineering and quantum information processing.
CONCLUSIONS

• Superconductivity is ubiquitous in conducting systems: metals, alloys, dirty and disordered systems, organic materials, 2D system...

• Superconductivity originates in the Cooper pairing of conduction carriers. In many systems the attractive interaction is mediated by phonons and pairing occurs in spin-singlet, orbital momentum zero state. But more and more unconventional systems are being discovered.

• Besides zero resistivity, superconductors possess broad range of interesting and practically important properties: magnetic, thermal, etc.

• Nanotechnology opened a new world in studies and applications of superconductors, in particular due to good matching to important physical length scales. In nanodevices Josephson effect and Andreev bounds states usually play key roles.

• Superconductors provide access to quantum-mechanical coherence at macroscopic length scales: a base for revolutionizing the world with quantum technologies.
LITERATURE

