Introduction to Superconductivity

Vladimir Eltsov

Aalto University, Finland

Cryocourse 2016

CONTENTS

- Basic experimental properties of superconductors
 - Zero resistivity Meissner effect Phase diagram Heat capacity
- Phenomenological description of superconductivity
 - Thermodynamics Phase coherence and supercurrents London equation
 - Flux quantization Energy gap and coherence length Clean and dirty
 - Type I and type II superconductors Abrikosov vortices
- Introduction to the BCS theory
 - Electron-electron attraction The Cooper problem Model Hamiltonian
 - Bogolubov transformation Bogolubov quasiparticles The gap equation
 - Non-uniform superconductors Bogolubov-de Gennes equations
- Andreev reflection and Andreev bound states
 - Scattering at the NIS interface Bound states in SNS, SIS junctions
 - CdGM states in vortex cores Supercurrent with bound states
- Josephson effect
 - DC and AC effect Shunted junction and washboard potential
 - SQUID Quantum dynamics

QUANTUM MECHANICS AT A HUMAN SCALE

Superconductivity was the first discovered macroscopic quantum phenomenon, where a sizable fraction of particles of a macroscopic object forms a coherent state, described by a quantum-mechanical wave function.

Applications:

- High magnetic fields
- Filtering of radio signals
- Ultra-sensitive magnetic/temperature and other sensors
- Metrology
- Ultra-low-noise amplifiers
- Quantum engineering
- Quantum information processing

DISCOVERY OF SUPERCONDUCTIVITY

Heike Kamerlingh Onnes

Liquefied helium in 1908.

Resistivity of metals when $T \rightarrow 0$?

Au, Pt: $\rho(T) = \text{const}$

BASIC EXPERIMENTAL PROPERTIES: Zero resistivity

Below the transition temperature T_c , the resistivity drops to zero.

Latest measurements put bound $\rho < 10^{-23} \Omega$ cm.

Really zero!

Dirty metals are good superconductors.

THE MEISSNER EFFECT

Walther Meissner

At $T < T_c$ the magnetic field is expelled from the superconductor even if the field was applied before reaching T_c .

Robert Ochsenfeld

PHASE DIAGRAM OF A SUPERCONDUCTOR

Superconductivity is destroyed by sufficiently strong electric currents or by the magnetic field above the critical field H_c .

Empirically the dependence of H_c on temperature is described reasonably well by

$$H_c(T) = H_c(0)[1 - (T/T_c)^2]$$

THERMODYNAMICS OF THE SUPERCONDUCTING TRANSITION

In the external field $H = H_c$

Entropy $S = -\partial F / \partial T$: $S_n - S_s = -\frac{H_c}{4\pi} \frac{dH_c}{dT}$.

Heat capacity $C = T \partial S / \partial T$: $C_n - C_s = -\frac{T}{4\pi} \left[H_c \frac{d^2 H_c}{dT^2} + \left(\frac{d H_c}{dT} \right)^2 \right].$

The heat capacity jump at T_c : $C_s(T_c) - C_n(T_c) = \frac{T_c}{4\pi} \left(\frac{dH_c}{dT}\right)^2$.

HEAT CAPACITY

Heat capacity jumps upward on transition to superconducting state. At $T \ll T_c$ the electronic heat capacity approaches zero exponentially \Rightarrow

Energy gap Δ

PHASE COHERENCE

Electrons form pairs, which are bosons and condense to a single state, described by the wave function ψ with the macroscopically coherent phase χ .

$$\psi = |\psi| \exp(i\chi)$$

$$\underbrace{\xrightarrow{\sim}}_{\infty} \underbrace{\xrightarrow{\sim}}_{\infty} \underbrace{\xrightarrow{\sim}}_{\infty} \underbrace{\xrightarrow{\sim}}_{\infty} \underbrace{\xrightarrow{\sim}}_{\infty}$$

$$\Rightarrow \mathbf{j}_{s}$$

Current

$$\mathbf{j}_{s} = \frac{e^{*}}{2m^{*}} \left[\psi^{*} \hat{\mathbf{p}} \psi + \psi \hat{\mathbf{p}}^{\dagger} \psi^{*} \right]$$

with

$$\hat{\mathbf{p}} = -i\hbar\nabla - (e^*/c)\mathbf{A}\,.$$

We get for $e^* = 2e$, $m^* = 2m$ and the density of pairs $|\psi|^2 = n_s/2$:

$$\mathbf{j}_s = -\frac{(e^*)^2}{m^* c} |\psi|^2 \left(\mathbf{A} - \frac{\hbar c}{e^*} \, \nabla \chi \right) = -\frac{e^2 n_s}{m c} \left(\mathbf{A} - \frac{\hbar c}{2e} \, \nabla \chi \right) \,.$$

THE LONDON EQUATION

Assuming density of superconducting electrons n_s is constant:

$$\mathbf{j}_s = -\frac{e^2 n_s}{mc} \left(\mathbf{A} - \frac{\hbar c}{2e} \nabla \chi \right) \quad \Rightarrow \quad \operatorname{curl} \mathbf{j}_s = -\frac{e^2 n_s}{mc} \operatorname{curl} \mathbf{A} = -\frac{e^2 n_s}{mc} \mathbf{h} \,.$$

Using the Maxwell equation

$$\mathbf{j}_s = (c/4\pi) \operatorname{curl} \mathbf{h}$$

 $\mathbf{h} + \lambda_I^2$ curl curl $\mathbf{h} = 0$,

we get the London equation

Fritz London

Heinz London

where the London penetration depth

$$\lambda_L = \left(\frac{mc^2}{4\pi n_s e^2}\right)^{1/2}$$

MEISSNER EFFECT

Magnetic field penetrates into a superconductor only over distances

$$\lambda_L = \left(\frac{mc^2}{4\pi n_s e^2}\right)^{1/2}$$

Typical metal with $m \sim m_e$ and $a_0 \sim 4$ Å, $n_s \sim a_0^{-3} \Rightarrow \lambda_L \sim 30$ nm

MAGNETIC FLUX QUANTIZATION

Integrating expression

$$\mathbf{j}_s = -\frac{e^2 n_s}{mc} \left(\mathbf{A} - \frac{\hbar c}{2e} \, \nabla \chi \right)$$

along a closed contour within a superconductor

$$-\frac{mc}{e^2} \oint n_s^{-1} \mathbf{j}_s \cdot d\mathbf{l} = \int_S \operatorname{curl} \mathbf{A} \cdot d\mathbf{S} - \frac{\hbar c}{2e} \,\Delta \chi = \Phi - \frac{\hbar c}{2e} \,2\pi n$$

 Φ is the magnetic flux through the contour.

$$\Phi' = \Phi + \frac{4\pi}{c} \oint \lambda_L^2 \mathbf{j}_s \cdot d\mathbf{l} = \Phi_0 n$$

Quantum of magnetic flux

$$\Phi_0 = \frac{\pi \hbar c}{|e|} \approx 2.07 \times 10^{-7} \text{ Oe} \cdot \text{cm}^2.$$

In SI units, $\Phi_0 = \pi \hbar / |e| = 2.07 \times 10^{-15} \text{T} \cdot \text{m}^2$.

THE ENERGY GAP AND COHERENCE LENGTH

Energy scale: Energy gap Δ_0

Binding energy of Cooper pair $2\Delta_0$, $\Delta_0 \sim k_B T_c$.

Energy gap (from the heat capacity) $\Delta(T \rightarrow 0) = \Delta_0$.

Uncertainty principle: interaction time in the pair $\tau_p \gtrsim \hbar/\Delta_0$.

Length scale: Coherence length ξ_0 :

$$\xi_0 \sim \tau_p v_F \sim \frac{\hbar v_F}{\Delta_0}$$

COHERENCE LENGTH AND THE CRITICAL FIELD

Maximum phase gradient $(\nabla \chi)_{max} \sim 1/\xi$ sets the maximum supercurrent

$$\mathbf{j}_s = -\frac{e^2 n_s}{mc} \left(\mathbf{A} - \frac{\hbar c}{2e} \, \nabla \chi \right) \quad \Rightarrow \quad (j_s)_{\max} \sim \frac{\hbar n_s e}{m} (\nabla \chi)_{\max}$$

Maximum supercurrent is reached when screening the critical field H_c

$$(j_s)_{\rm max} \sim (c/4\pi) H_c/\lambda_L$$

Critical field

$$H_c \sim \frac{4\pi\lambda_L}{c} \frac{\hbar n_s e}{m\xi} = \frac{\pi\hbar c}{e} \frac{\lambda_L}{\pi\xi} \frac{4\pi n_s e^2}{mc^2} = \frac{\Phi_0}{\pi\xi\lambda_L}$$

Condensation energy [remember $\xi_0 \sim \hbar v_F / \Delta_0$]

$$F_n(0) - F_s(0) = \frac{H_c^2(0)}{8\pi} \sim \frac{n}{2mv_F^2} \Delta_0^2 \sim [N(0)\Delta_0]\Delta_0$$

 $N(0) \sim n/E_F$ — density of states, $E_F = mv_F^2/2$ — Fermi energy

LONDON AND PIPPARD REGIMES

Two length scales: London penetration depth and coherence length.

How do their values compare?

Typical metallic superconductor [like Al] with $T_c = 1$ K, the electron density *n* one per ion, lattice constant $a_0 \sim 4$ Å:

$$n_s \approx n = a_0^{-3} \approx 4 \cdot 10^{22} \,\mathrm{cm}^{-3}, \ v_F = p_F/m = (\hbar/m)(3\pi^2 n)^{1/3} \approx 10^8 \,\mathrm{cm/s}$$

DIRTY AND CLEAN LIMITS

Non-magnetic impurities (scattering centers) do not affect static properties of a superconductor (like T_c) [Anderson theorem].

But properties connected to the spatial variation of the superconducting state (in particular, supercurrents and coherence length) are strongly affected.

Interaction time $\tau_p \sim \hbar/\Delta_0$.

Clean limit – ballistic motion

$$\xi_{\text{clean}} = \xi_0 \sim \tau_p v_F \sim \frac{\hbar v_F}{\Delta_0}$$

Dirty limit – diffusive motion

mean free path ℓ scattering time $\tau_s = \ell/v_F < \tau_p$ diffusion coefficient $D \sim v_F^2 \tau_s = v_F \ell$

$$\xi_{
m dirty} = \sqrt{D au_p} = \sqrt{v_F \ell \hbar / \Delta_0} = \sqrt{\xi_{
m clean} \ell}$$

In dirty materials $\ell \sim a_0 \ll \lambda_L$ and $\xi_{\text{dirty}} < \lambda_L$

TYPE I AND TYPE II SUPERCONDUCTORS

In bulk superconductor magnetic induction $\mathbf{B} = \mathbf{H} + 4\pi \mathbf{M} = 0$.

The magnetization and susceptibility are ideal diamagnetic

$$\mathbf{M} = -\frac{\mathbf{H}}{4\pi}; \ \chi = \frac{\partial M}{\partial H} = -\frac{1}{4\pi}$$

INTERMEDIATE STATE OF TYPE I SUPERCONDUCTORS

In the external field $H < H_c$ the sample is divided to normal and superconducting domains so that in the normal phase magnetic induction $B = H_c$ while in the superconducting domains magnetic field is absent.

ENERGY OF THE NS BOUNDARY

Energy change compared to the uniform state at $H = H_c$

$$\Delta F = \frac{H_c^2}{8\pi} \,\delta : \qquad \xi \gg \lambda_L \qquad \delta \sim \xi - \lambda_L > 0 \qquad \delta \approx 1.89\xi$$
$$\xi \ll \lambda_L \qquad \delta \sim -(\lambda_L - \xi) < 0 \qquad \delta \approx -1.104\lambda_L$$

Transition from the positive to the negative energy of the NS boundary is controlled by the Ginzburg-Landau parameter κ :

$$\kappa = \frac{\lambda_L}{\xi}$$
, transition at $\kappa = \frac{1}{\sqrt{2}}$.

THE GL PARAMETER FROM MATERIAL PARAMETERS

Order-parameter variation scale – coherence (healing) length $\xi(T)$ is *not* the Cooper-pair size ξ_0 (or $\xi_{dirty} = \sqrt{\xi_0 \ell}$):

 $\xi(T)$: gradient energy $[\xi_0] \leftrightarrow$ condensation energy [T-dependent]

In the clean limit we have

$$\begin{split} \xi(T) &= \xi_0 \sqrt{\frac{7\zeta(3)}{12}} \left[1 - \frac{T}{T_c} \right]^{-1/2}, \quad \lambda_L = \frac{c}{4|e|v_F} \sqrt{\frac{3}{\pi N(0)}} \left[1 - \frac{T}{T_c} \right]^{-1/2} \\ \kappa &= \frac{3c}{|e|\hbar} \sqrt{\frac{\pi}{7\zeta(3)N(0)}} \frac{k_B T_c}{v_F^2} = \frac{3\pi^2}{\sqrt{14\zeta(3)}} \frac{\hbar c}{e^2} \frac{k_B T_c}{E_F} \sqrt{\frac{e^2/a_0}{E_F}} \sim 10^3 \frac{k_B T_c}{E_F}. \end{split}$$
For usual superconductors
$$k_B T_c / E_F < 10^{-3} \qquad \Rightarrow \kappa \lesssim 1$$
For HTSC
$$k_B T_c / E_F \sim 10^{-1} - 10^{-2} \qquad \Rightarrow \kappa \gg 1$$

For dirty superconductors with $\tau_s/\tau_p \ll 1$: $\kappa_{\text{dirty}} \sim \kappa_{\text{clean}}(\tau_p/\tau_s) \gg 1$

ABRIKOSOV VORTICES

Magnetic field penetrates into type II superconductor in the form of Abrikosov vortices, which are topologically-protected linear defects of the order parameter: Order parameter is zero at the vortex axis and the phase of the order parameter winds by 2π on a loop around the vortex. Each vortex carries a single quantum of magnetic flux Φ_0 .

Alexei Abrikosov

ABRIKOSOV VORTICES

Magnetic field penetrates into type II superconductor in the form of Abrikosov vortices, which are topologically-protected linear defects of the order parameter: Order parameter is zero at the vortex axis and the phase of the order parameter winds by 2π on a loop around the vortex. Each vortex carries a single quantum of magnetic flux Φ_0 .

PHASE DIAGRAM OF TYPE-II SUPERCONDUCTORS

 H_{c1} : vortex energetically favorable

$$\mathcal{F}_{v} = (1/4\pi)\Phi_{0}H_{c1}$$
$$H_{c1} = \frac{\Phi_{0}}{4\pi\lambda_{L}^{2}}\ln\kappa = H_{c}\frac{\ln\kappa}{\sqrt{2\kappa}}$$

H_c: thermodynamic

$$H_c = \frac{\Phi_0}{2\sqrt{2\pi\lambda_L\xi}}$$

 H_{c2} : no stable SC regions

$$H_{c2} = \frac{\Phi_0}{2\pi\xi^2} = H_c \sqrt{2}\kappa$$

For $\xi \sim 2 \text{ nm}$ one gets $H_{c2} \sim 80 \text{ T}$.

RESISTIVITY FROM VORTEX MOTION

Lorentz force acting on vortex from electric current

$$\mathbf{f}_L = \frac{\Phi_0}{c} [\mathbf{j}^{\mathrm{ex}} \times \mathbf{b}].$$

Per unit volume we have

$$\mathbf{F}_L = n_v \mathbf{f}_L = c^{-1} [\mathbf{j}^{\text{ex}} \times (n_v \Phi_0 \mathbf{b})] = c^{-1} [\mathbf{j}^{\text{ex}} \times \mathbf{B}].$$

If vortex moves with friction η : $\mathbf{v}_L = \mathbf{f}_L / \eta$

$$\mathbf{E} = c^{-1} [\mathbf{B} \times \mathbf{v}_L] = (\Phi_0 B / \eta c^2) \mathbf{j}^{\text{ex}}$$

and resistivity

$$\rho = E/j^{\rm ex} = \Phi_0 B/\eta c^2 \,.$$

Magnetic field applications require pinning!

The BCS Theory

John Bardeen

Leon Cooper

John Robert Schrieffer

Nikolai Bogolubov

EXCITATIONS IN LANDAU FERMI LIQUID

ELECTRON ATTRACTION: Polarization of the lattice

Atomic energy scale

$$M\omega_D^2 a_0^2 \sim \frac{e^2}{a_0} \sim \frac{(\hbar/a_0)^2}{m}$$

Debye frequency

$$\omega_D \sim \frac{E_F}{\hbar} \sqrt{\frac{m}{M}}$$

Length of electron tail

 $\sim v_F \omega_D^{-1} \sim \sqrt{M/m} a_0 \sim 300 a_0 \Rightarrow \mathbf{p}_1 \approx \pm \mathbf{p}_2 \Rightarrow \mathbf{p}_1 \approx -\mathbf{p}_2$

Does not depend on the directions of $\mathbf{p}_1, \mathbf{p}_2 \Rightarrow$ orbital momentum L = 0 \Rightarrow opposite spins

Model: Two electrons with opposite momenta and spins attract each other with the constant amplitude -W if $\epsilon_{\mathbf{p}_1} < E_c$ and $\epsilon_{\mathbf{p}_2} < E_c$ (where $E_c \sim \hbar \omega_D$) and do not interact otherwise.

Schrödinger equation for the pair wave function $\Psi(\mathbf{r}_1, \mathbf{r}_2)$

$$\left[\hat{H}_e(\mathbf{r}_1) + \hat{H}_e(\mathbf{r}_2) + W(\mathbf{r}_1 - \mathbf{r}_2)\right] \Psi(\mathbf{r}_1, \mathbf{r}_2) = E \Psi(\mathbf{r}_1, \mathbf{r}_2).$$

Expansion in single-particle wave functions

$$\Psi(\mathbf{r}_1,\mathbf{r}_2) = \sum_{\mathbf{p}} c_{\mathbf{p}} \psi_{\mathbf{p}\uparrow}(\mathbf{r}_1) \psi_{-\mathbf{p}\downarrow}(\mathbf{r}_2) = \sum_{\mathbf{p}} a_{\mathbf{p}} e^{i\mathbf{p}\mathbf{r}/\hbar} = \Psi(\mathbf{r}), \quad \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_2.$$

$$\psi_{\mathbf{p}\uparrow}(\mathbf{r}_1) \propto e^{i\mathbf{p}\mathbf{r}_1/\hbar}, \quad \psi_{-\mathbf{p}\downarrow}(\mathbf{r}_2) \propto e^{-i\mathbf{p}\mathbf{r}_2/\hbar}, \quad a_{\mathbf{p}} = \int \Psi(\mathbf{r}) e^{-i\mathbf{p}\mathbf{r}/\hbar} d^3\mathbf{r}$$

THE COOPER PROBLEM: Fourier transformed equation

Schrödinger equation becomes

$$2\epsilon_{\mathbf{p}}a_{\mathbf{p}} + \sum_{\mathbf{p}'} W_{\mathbf{p},\mathbf{p}'}a_{\mathbf{p}'} = Ea_{\mathbf{p}}.$$

Interaction model:

$$W_{\mathbf{p},\mathbf{p}'} = \begin{cases} -W, & \epsilon_{\mathbf{p}} \text{ and } \epsilon_{\mathbf{p}'} < E_c, \\ & \text{i.e. } p_F - E_c/v_F < p(\text{and } p') < p_F + E_c/v_F \\ 0, & \text{otherwise} \end{cases}$$

We thus have

$$a_{\mathbf{p}} = -\frac{W}{E - 2\epsilon_{\mathbf{p}}} \sum_{\mathbf{p}', \epsilon_{\mathbf{p}'} < E_c} a_{\mathbf{p}'} = -\frac{WC}{E - 2\epsilon_{\mathbf{p}}}$$
$$-\frac{1}{W} = \sum_{\mathbf{p}, \epsilon_{\mathbf{p}} < E_c} \frac{1}{E - 2\epsilon_{\mathbf{p}}} \equiv \Phi(E)$$

THE COOPER PROBLEM: Bound state

Bound state with $E = E_b < 0$

$$\frac{1}{W} = \sum_{\mathbf{p}, \epsilon_{\mathbf{p}} < E_c} \frac{1}{2\epsilon_{\mathbf{p}} - E_b}$$

Sum over momentum \rightarrow the integral over energy:

$$\frac{1}{W} = 2N(0) \int_0^{E_c} \frac{d\epsilon_{\mathbf{p}}}{2\epsilon_{\mathbf{p}} + |E_b|} = N(0) \ln\left(\frac{|E_b| + 2E_c}{|E_b|}\right) \,.$$

From this equation we obtain

$$|\boldsymbol{E}_b| = \frac{2E_c}{e^{1/N(0)W} - 1}$$

For weak coupling, $N(0)W \ll 1$, we find

$$|\underline{E}_b| = 2E_c e^{-1/N(0)W}$$

For strong coupling, $N(0)W \gg 1$,

 $|\underline{E}_b| = 2N(0)WE_c$

THE BCS MODEL: Non-interacting Hamiltonian

Non-interacting particles at $k > k_F$ and holes at $k < k_F$

$$H_0 = \sum_{\mathbf{k}\sigma, k > k_F} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\sigma, k < k_F} \epsilon_{\mathbf{k}} h_{\mathbf{k}\sigma}^{\dagger} h_{\mathbf{k}\sigma} \,.$$

 $c_{\mathbf{k}\sigma}c_{\mathbf{k}\sigma}^{\dagger} = 1 - c_{\mathbf{k}\sigma}^{\dagger}c_{\mathbf{k}\sigma}$

But
$$h_{\mathbf{k}\sigma}^{\dagger} = c_{-\mathbf{k},-\sigma}$$
 and $h_{\mathbf{k}\sigma} = c_{-\mathbf{k},-\sigma}^{\dagger}$ and we have

$$H_{0} = \sum_{\mathbf{k}\sigma, k > k_{F}} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\sigma, k < k_{F}} \epsilon_{-\mathbf{k}} c_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma}^{\dagger}$$

$$= \sum_{\mathbf{k}\sigma, k > k_{F}} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} - \sum_{\mathbf{k}\sigma, k < k_{F}} \epsilon_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\sigma, k < k_{F}} \epsilon_{\mathbf{k}} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + E_{0}.$$

Here we defined

$$\xi_{\mathbf{k}} = \operatorname{sign}(k - k_F)\epsilon_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} - E_F \approx \hbar v_F (k - k_F).$$

THE BCS MODEL: Pairing interaction

Interaction $(\mathbf{k}', -\mathbf{k}') \rightarrow (\mathbf{k}, -\mathbf{k})$ without affecting the quasiparticle spin.

$$H = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\mathbf{k}'} W_{\mathbf{k}\mathbf{k}'} \underbrace{c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}}_{A} \underbrace{c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}}_{B}$$

Mean-field approximation: For two operators A and B

$$AB = \langle A \rangle B + A \langle B \rangle - \langle A \rangle \langle B \rangle + (A - \langle A \rangle)(B - \langle B \rangle)$$

The error is quadratic in fluctuations, which are relatively small in a macroscopic system.

THE BCS MODEL: Hamiltonian

$$H_{\text{BCS}} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}} \left(\Delta_{\mathbf{k}}^{*} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} + \Delta_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} - \Delta_{\mathbf{k}} \left\langle c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger} \right\rangle \right)$$

We defined $\Delta_{\mathbf{k}} = \sum_{\mathbf{k}'} W_{\mathbf{k}\mathbf{k}'} \left\langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \right\rangle$, thus $\Delta_{\mathbf{k}}^{*} = \sum_{\mathbf{k}'} W_{\mathbf{k}\mathbf{k}'} \left\langle c_{\mathbf{k}'\uparrow}^{\dagger} c_{-\mathbf{k}'\downarrow}^{\dagger} \right\rangle$

We want to diagonalize it with Bogolubov transformation

$$H_{\rm BCS} = \sum_{\mathbf{k}\sigma} E_{\mathbf{k}} \gamma_{\mathbf{k}\sigma}^{\dagger} \gamma_{\mathbf{k}\sigma} + E_{\rm cond}$$

Here $\gamma_{\mathbf{k}\sigma}^{\dagger}$ and $\gamma_{\mathbf{k}\sigma}$ are new Bogolubov quasiparticles with spectrum $E_{\mathbf{k}}$. New operators mix particles and holes:

$$\begin{split} \gamma_{\mathbf{k}\uparrow}^{\dagger} &= u_{\mathbf{k}} c_{\mathbf{k}\uparrow}^{\dagger} + v_{\mathbf{k}} h_{\mathbf{k}\uparrow}^{\dagger} & h_{\mathbf{k}\uparrow}^{\dagger} = c_{-\mathbf{k}\downarrow} \\ \gamma_{-\mathbf{k}\downarrow} &= u_{\mathbf{k}}^{*} c_{-\mathbf{k}\downarrow} - v_{\mathbf{k}}^{*} h_{-\mathbf{k}\downarrow} & h_{-\mathbf{k}\downarrow} = c_{\mathbf{k}\uparrow}^{\dagger} \\ \left\{ \gamma_{\mathbf{k}\sigma}, \gamma_{\mathbf{k}'\sigma'}^{\dagger} \right\} &= \delta_{\mathbf{k}\mathbf{k}'} \delta_{\sigma\sigma'}, \; \{\gamma_{\mathbf{k}\sigma}, \gamma_{\mathbf{k}'\sigma'}\} = \left\{ \gamma_{\mathbf{k}\sigma}^{\dagger}, \gamma_{\mathbf{k}'\sigma'}^{\dagger} \right\} = 0 \quad \Rightarrow \quad |u_{\mathbf{k}}|^{2} + |v_{\mathbf{k}}|^{2} = 1 \end{split}$$
THE BCS MODEL: Diagonal form

The desired form is

$$H_{\rm BCS} = \sum_{\mathbf{k}\sigma} E_{\mathbf{k}} \gamma_{\mathbf{k}\sigma}^{\dagger} \gamma_{\mathbf{k}\sigma} + E_{\rm cond}$$

$$E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$$

and

BOGOLUBOV QUASIPARTICLES: Energy spectrum

Landau criterion $v_c = \min(E_p/p) \approx |\Delta|/p_F$

BOGOLUBOV QUASIPARTICLES: Group velocity

For a given energy $E > |\Delta|$ there are two possible values of ξ_k :

$$\xi_{\mathbf{k}}^{\pm} = \pm \sqrt{E^2 - |\Delta|^2} = \hbar v_F (k_{\pm} - k_F), \quad k_{\pm} = k_F \pm \frac{1}{\hbar v_F} \sqrt{E^2 - |\Delta|^2}$$

$$\xi_{\mathbf{k}}^+, k_+ - \text{particles}, \quad \xi_{\mathbf{k}}^-, k_- - \text{holes}$$

$$\mathbf{v}_g = \frac{dE}{d\mathbf{p}} = \frac{\hat{\mathbf{k}}}{\hbar} \frac{dE}{dk}, \quad \mathbf{v}_g^{\text{particles}} = v_F \frac{\sqrt{E^2 - |\Delta|^2}}{E} \hat{\mathbf{k}}, \quad \mathbf{v}_g^{\text{holes}} = -v_F \frac{\sqrt{E^2 - |\Delta|^2}}{E} \hat{\mathbf{k}}.$$

BOGOLUBOV QUASIPARTICLES: Density of states

Since
$$E_{\mathbf{k}} = \sqrt{\epsilon_{\mathbf{k}}^2 + |\Delta|^2}$$
 we have

$$\sum_{\mathbf{k}} \rightarrow N(0) \int d\epsilon_{\mathbf{k}} = N(0) \int d\left(\sqrt{E_{\mathbf{k}}^2 - |\Delta|^2}\right) = N(0) \int \frac{E_{\mathbf{k}} dE_{\mathbf{k}}}{\sqrt{E_{\mathbf{k}}^2 - |\Delta|^2}}.$$
The density of states in the superconductor N_s
is
 $N_s(E) = \begin{cases} 0, & E \leq |\Delta|, \\ N(0) \frac{E}{\sqrt{E^2 - |\Delta|^2}}, & E > |\Delta|. \\ N(0) \frac{E}{\sqrt{E^2 - |\Delta|^2}}, & E > |\Delta|. \end{cases}$

SELF-CONSISTENCY EQUATION

We insert Bogolubov transformation $[c_{k\sigma} \rightarrow \gamma_{k\sigma} \rightarrow (u_k, v_k) \rightarrow (\Delta_k, E_k)]$ into the gap definition and obtain equation for Δ_k [remember also $E_k(\Delta_k)$]

$$\Delta_{\mathbf{k}} = \sum_{\mathbf{k}'} W_{\mathbf{k}\mathbf{k}'} \left\langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \right\rangle = -\sum_{\mathbf{k}'} W_{\mathbf{k}\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}} [1 - 2f(E_{\mathbf{k}'})]$$

We used Fermi distribution

$$\left\langle \gamma_{\mathbf{k}\sigma}^{\dagger}\gamma_{\mathbf{k}\sigma}\right\rangle = f(E_{\mathbf{k}}), \quad f(E) = \frac{1}{e^{E/k_{\mathrm{B}}T} + 1}$$

For our model interaction k dependence is simple

$$W_{\mathbf{k}\mathbf{k}'} = \begin{cases} -W, & \epsilon_{\mathbf{k}} \text{ and } \epsilon_{\mathbf{k}'} < E_c \\ 0, & \text{otherwise} \end{cases} \quad \Delta_{\mathbf{k}} = \begin{cases} \Delta, & E_{\mathbf{k}} < \sqrt{E_c^2 + |\Delta|^2} \approx E_c \\ 0, & \text{otherwise} \end{cases}$$

With these substitutions the gap equation becomes

$$\Delta = W\Delta \sum_{\mathbf{k}, \epsilon_{\mathbf{k}} < E_{c}} \frac{1 - 2f(E_{\mathbf{k}})}{2E_{\mathbf{k}}} = \Delta \frac{W}{2} \sum_{\mathbf{k}, \epsilon_{\mathbf{k}} < E_{c}} \frac{1}{E_{\mathbf{k}}(\Delta)} \tanh \frac{E_{\mathbf{k}}(\Delta)}{2k_{\mathrm{B}}T}$$

It has a trivial solution $\Delta = 0$ corresponding to the normal metal.

THE GAP EQUATION

$$1 = \lambda \int_{|\Delta|} \frac{dE}{\sqrt{E^2 - |\Delta|^2}} \tanh \frac{E}{2k_{\rm B}T}$$

Interaction constant $\lambda = N(0)W$ $\lambda \sim 0.1 - 0.3$ in practical superconductors

HEAT CAPACITY

Only quasiparticles contribute to the entropy

$$S = -k_{\rm B} \sum_{\mathbf{k}\sigma} \left[(1 - f(E_{\mathbf{k}})) \ln(1 - f(E_{\mathbf{k}})) + f(E_{\mathbf{k}}) \ln f(E_{\mathbf{k}}) \right]$$

$$f(E_{\mathbf{k}}) = \frac{1}{e^{E_{\mathbf{k}}/k_{\mathrm{B}}T} + 1}, \quad E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^{2} + |\Delta_{\mathbf{k}}(T)|^{2}}$$

The heat capacity

$$C = -T\frac{dS}{dT} = \frac{2}{k_{\rm B}} \sum_{\mathbf{k}} f(E_{\mathbf{k}})(1 - f(E_{\mathbf{k}})) \left[\frac{E_{\mathbf{k}}^2}{T^2} - \frac{1}{2T} \frac{d|\Delta_{\mathbf{k}}|^2}{dT} \right]$$

For $T \ll T_c$ we have $E \approx \Delta \gg k_{\rm B}T$ and $f(E) \approx e^{-E/k_{\rm B}T}$.

As a result

$$C = 2\sqrt{2\pi}k_{\rm B}N(0)\Delta_0 \left(\frac{\Delta_0}{k_{\rm B}T}\right)^{3/2} \exp\left(-\frac{\Delta_0}{k_{\rm B}T}\right).$$

NON-UNIFORM SUPERCONDUCTORS

Real-space quasiparticle creation and annihilation operators

$$\Psi^{\dagger}(\mathbf{r},\sigma) = \sum_{\mathbf{k}} e^{-i\mathbf{k}\mathbf{r}} c_{\mathbf{k}\sigma}^{\dagger}, \quad \Psi(\mathbf{r},\sigma) = \sum_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}} c_{\mathbf{k}\sigma}$$

Non-interacting Hamiltonian corresponds to

$$H_0 = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} \quad \rightarrow \quad H_0 = \sum_{\sigma} \int d^3 \mathbf{r} \, \Psi^{\dagger}(\mathbf{r},\sigma) \hat{H}_e \Psi(\mathbf{r},\sigma)$$

where the free particle Hamiltonian

$$\xi_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m} - E_F \quad \rightarrow \quad \hat{H}_e = \frac{1}{2m} \left(-i\hbar \nabla - \frac{e}{c} \mathbf{A} \right)^2 + U(\mathbf{r}) - \mu,$$

which accounts for the magnetic field through the vector potential **A** and includes some non-magnetic potential $U(\mathbf{r})$.

Non-interacting \rightarrow add interaction $(\Psi^{\dagger}\Psi^{\dagger}\Psi\Psi) \rightarrow$ mean-field theory \rightarrow diagonalize with Bogolubov transformation

$$\Psi(\mathbf{r}\uparrow) = \sum_{\mathbf{k}} \left[u_{\mathbf{k}}(\mathbf{r})\gamma_{\mathbf{k}\uparrow} - v_{\mathbf{k}}^{*}(\mathbf{r})\gamma_{-\mathbf{k}\downarrow}^{\dagger} \right]$$
$$\Psi^{\dagger}(\mathbf{r}\downarrow) = \sum_{\mathbf{k}} \left[u_{\mathbf{k}}^{*}(\mathbf{r})\gamma_{-\mathbf{k}\downarrow}^{\dagger} + v_{\mathbf{k}}(\mathbf{r})\gamma_{\mathbf{k}\uparrow}^{\dagger} \right]$$

Here **k** can be any enumeration of states, not necessarily wave vector. [For uniform case $u_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}e^{i\mathbf{k}\mathbf{r}}$ and $v_{\mathbf{k}}(\mathbf{r}) = v_{\mathbf{k}}e^{i\mathbf{k}\mathbf{r}}$]

+ completeness/orthogonality conditions on $u_{\mathbf{k}}(\mathbf{r})$ and $v_{\mathbf{k}}(\mathbf{r})$ from Fermi commutation relations for Ψ and γ .

BOGOLUBOV – DE GENNES EQUATIONS

Diagonalization condition

$$\begin{cases} \hat{H}_e \, u_{\mathbf{k}}(\mathbf{r}) \, + \, \Delta(\mathbf{r}) \, v_{\mathbf{k}}(\mathbf{r}) \, = E_{\mathbf{k}} \, u_{\mathbf{k}}(\mathbf{r}) \\ \Delta^*(\mathbf{r}) \, u_{\mathbf{k}}(\mathbf{r}) \, - \, \hat{H}_e^* \, v_{\mathbf{k}}(\mathbf{r}) \, = E_{\mathbf{k}} \, v_{\mathbf{k}}(\mathbf{r}) \end{cases}$$

$$\hat{H}_e = \frac{1}{2m} \left(-i\hbar \nabla - \frac{e}{c} \mathbf{A} \right)^2 + U(\mathbf{r}) - \mu$$

Self-consistency equation

$$\Delta(\mathbf{r}) = W \sum_{\mathbf{k}, \epsilon_{\mathbf{k}} < E_c} u_{\mathbf{k}}(\mathbf{r}) v_{\mathbf{k}}^*(\mathbf{r}) [1 - 2f(E_{\mathbf{k}})]$$

+ completeness/orthogonality conditions on $u_{\mathbf{k}}(\mathbf{r})$ and $v_{\mathbf{k}}(\mathbf{r})$

+ Maxwell equations to connect current and field

Andreev reflection

Alexander Andreev

MODEL OF NS(NIS) INTERFACE

Bogolubov - de Gennes equations

INCIDENT AND REFLECTED QUASIPARTICLES

Incident particle excitation with energy $\epsilon > |\Delta|$

SUBGAP STATES

For an excitation coming from the normal side with $\epsilon < |\Delta|$

Andreev reflection probability

$$|a|^2 = |A^-/A^+|^2 = 1$$
 $A^{\pm} = \frac{1}{\sqrt{2}} \left(1 \pm i \frac{\sqrt{|\Delta|^2 - \epsilon^2}}{\epsilon}\right)^{1/2}$

NEGATIVE ENERGIES

Bogolubov - de Gennes equations possess an important property: If

$$\begin{pmatrix} u(\mathbf{r}) \\ v(\mathbf{r}) \end{pmatrix}$$
 is a solution for the energy ϵ

then

$$\begin{pmatrix} v(\mathbf{r})^* \\ -u(\mathbf{r})^* \end{pmatrix}$$
 is a solution for the energy $-\epsilon$

Thus formally we can introduce negative energies and "Dirac sea" of excitations.

SUPERCONDUCTOR-INSULATOR-SUPERCONDUCTOR (SIS) CONTACT

Conduction channel transmission coefficient ${\cal T}$

$$\frac{1}{R_N} = \frac{\mathcal{T}}{R_0}$$
, quantum of resistance $R_0 = \frac{\pi \hbar}{e^2} \approx 12.9 \text{ k}\Omega$

BOUND FERMION STATES IN THE VORTEX CORE

SUPERCURRENT VIA ANDREEV BOUND STATES

SUPERCURRENT IN THE POINT CONTACT

For the contact with resistance R_N in the normal state supercurrent is

$$I_s = \frac{\pi |\Delta| \sin(\phi/2)}{eR_N} \tanh \frac{|\Delta| \cos(\phi/2)}{2k_{\rm B}T}$$

Josephson effect and weak links

Brian Josephson

DC Josephson effect

AC Josephson effect

$$\hbar \frac{d\phi}{dt} = 2eV$$

 $I_s = I_c \sin \phi$

 I_c is the critical Josephson current

WEAKLY COUPLED SUPERCONDUCTORS (Feynman model)

With coupling -K between the superconductors

$$i\hbar \frac{\partial \psi_1}{\partial t} = (E_1 + e^* V/2)\psi_1 - K\psi_2$$
$$i\hbar \frac{\partial \psi_2}{\partial t} = (E_2 - e^* V/2)\psi_2 - K\psi_1$$

Here $e^* = 2e$ is the charge of the Cooper pair.

DC JOSEPHSON EFFECT

We obtain

$$\hbar \frac{dN_1}{dt} = -2K\sqrt{N_1N_2}\sin(\chi_2 - \chi_1)$$
$$\hbar \frac{dN_2}{dt} = 2K\sqrt{N_1N_2}\sin(\chi_2 - \chi_1)$$

This gives the charge conservation $N_1 + N_2 = \text{const}$ together with the relation

 $I_s = I_c \sin \phi$

where

$$I_s = e^* \frac{dN_2}{dt} = -e^* \frac{dN_1}{dt}$$

is the current flowing from the first into the second electrode,

$$I_c = 4eK\sqrt{N_1N_2}/\hbar$$

is the critical Josephson current, while $\phi = \chi_2 - \chi_1$ is the phase difference.

AC JOSEPHSON EFFECT

For phases we find

$$\hbar N_2 \frac{d\chi_2}{dt} = eVN_2 + K\sqrt{N_1N_2}\cos(\chi_2 - \chi_1)$$

$$\hbar N_1 \frac{d\chi_1}{dt} = -eVN_1 + K\sqrt{N_1N_2}\cos(\chi_2 - \chi_1)$$

Subtracting we get

$$\hbar (N_2 - N_1) \frac{d(\chi_2 - \chi_1)}{dt} = 2eV(N_2 - N_1)$$

or

$$\hbar \frac{d\phi}{dt} = 2eV$$

CAPACITIVELY AND RESISTIVELY SHUNTED JUNCTION

Potential $U(\phi) = E_J(1 - \cos \phi) - (\hbar I/2e)\phi = E_J(1 - \cos \phi - \phi I/I_c)$

$$E_J = \frac{\hbar I_c}{2e}$$

WASHBOARD POTENTIAL

Small oscillations around the minimum:

$$1 - \cos \phi = 2\sin^2(\phi/2) \approx \phi^2/2, \quad U(\phi) \approx \frac{E_J \phi^2}{2}$$

2

Plasma frequency

Quality factor

$$\omega_p = \sqrt{\frac{E_J}{M}} = \frac{\sqrt{8E_J E_C}}{\hbar} \qquad \qquad Q = \omega_p R G$$

EFFECTIVE INDUCTANCE

 $\begin{aligned} |\phi| \ll 2\pi \implies I \approx I_c \phi \\ V = \frac{\hbar}{2e} \frac{\partial \phi}{\partial t} \approx \frac{\hbar}{2eI_c} \frac{\partial I_J}{\partial t} \qquad \qquad V = \frac{1}{c} \frac{\partial \Phi}{\partial t} = \frac{L}{c^2} \frac{\partial I_L}{\partial t} \end{aligned}$

The effective kinetic inductance of the Josephson junction

$$L_J = \frac{\hbar c^2}{2eI_c}$$

Critical current I_c depends e.g. on temperature \Rightarrow detectors.

Nonlinear inductance at large ϕ .

VOLTAGE BIAS

Let us consider the case when the constant voltage V is applied to the junction. In this case

$$\frac{\partial \phi}{\partial t} = \frac{2e}{\hbar}V = \omega_J = \text{const}, \quad \phi = \phi_0 + \omega_J t$$

Total current

$$I = \frac{V}{R} + I_c \sin(\phi_0 + \omega_J t)$$

and the average current has simple ohmic behavior for any damping

$$\bar{I} = V/R$$
.

Thus for observation of non-trivial dynamics of Josephson junctions the current bias is essential.

DYNAMICS OF JOSEPHSON JUNCTIONS

Small damping \Rightarrow hysteretic behavior

CURRENT-VOLTAGE RELATIONS

Small Q (no C) – exact solution:

$$\bar{V} = R\sqrt{I^2 - I_c^2}$$

Large *Q*: rapid slide down with almost constant voltage $V \approx \overline{V}$. Expanding for small oscillations of phase

$$\phi = \omega_J t + \delta \phi(t), \quad \omega_J = 2e\bar{V}/\hbar, \quad \delta \phi \ll 1$$

leads to

$$\overline{V} = IR$$
, $I_r \sim I_c/Q$

THERMAL FLUCTUATIONS: OVERDAMPED JUNCTION

SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES

I.

dc SQUID:

$$\mathbf{j}_{s} = -\frac{e^{2}n_{s}}{mc} \left(\mathbf{A} - \frac{\hbar c}{2e} \nabla \chi \right) = 0$$

$$\chi_{3} - \chi_{1} + \chi_{2} - \chi_{4} - \frac{2e}{\hbar c} \left(\int_{1}^{3} \mathbf{A} \cdot d\mathbf{l} + \int_{4}^{2} \mathbf{A} \cdot d\mathbf{l} \right) = 0$$

$$\underbrace{(\chi_{2} - \chi_{1})}{\phi_{a}} - \underbrace{(\chi_{4} - \chi_{3})}{\phi_{b}} = \frac{2e}{\hbar c} \oint_{1342} \mathbf{A} \cdot d\mathbf{l} = \frac{2\pi \Phi}{\Phi_{0}}$$

Total current

$$I = I_a + I_b = I_c \sin \phi_a + I_c \sin \phi_b = 2I_c \cos \left(\frac{\pi \Phi}{\Phi_0}\right) \sin \left(\phi_a - \frac{\pi \Phi}{\Phi_0}\right)$$

The maximum current depends on the magnetic flux through the loop

$$I_{c,\text{SQUID}} = 2 \left| I_c \cos\left(\frac{\pi \Phi}{\Phi_0}\right) \right|$$

INFLUENCE OF THE SQUID INDUCTANCE

SHAPIRO STEPS

Microwave irradiation of the junction $V = V_0 + V_1 \cos(\omega t)$ and

$$\phi = \frac{2e}{\hbar} \int_0^t V(t') dt' = \phi_0 + \omega_J t + a \sin(\omega t), \quad \omega_J = \frac{2e}{\hbar} V_0, \quad a = \frac{2e}{\hbar} \frac{V_1}{\omega}$$

The supercurrent

$$I = I_c \sin \phi = I_c \sum_{n=-\infty}^{\infty} (-1)^n J_n (2eV_1/\hbar\omega) \sin(\phi_0 + \omega_J t - n\omega t)$$

When

$$\omega_J = n\omega$$
, i.e. $V_0 = n(\hbar\omega/2e)$

the supercurrent has a dc component $I_n = I_c J_n (2eV_1/\hbar\omega) \sin(\phi_0 + \pi n)$.

QUANTUM DYNAMICS OF JOSEPHSON JUNCTIONS

Analogy

Josephson junction \leftrightarrow **particle in the washboard potential** can be extended to quantum-mechanical description. If ϕ is the coordinate of the a particle, then the momentum operator is

$$\hat{p}_{\phi} = -i\hbar \frac{\partial}{\partial \phi}$$

The Shrödinger equation for the wave function Ψ is

$$\hat{\mathcal{H}}\Psi = \left[\frac{\hat{p}_{\phi}^2}{2M} + U(\phi)\right]\Psi = E\Psi$$

with

$$M = \frac{\hbar^2 C}{4e^2} = \frac{\hbar^2}{8E_C}, \quad U(\phi) = E_J (1 - \cos \phi) - (\hbar I/2e)\phi$$

Thus the Hamiltonian is

$$\hat{\mathcal{H}} = -4E_C \frac{\partial^2}{\partial \phi^2} + E_J \left(1 - \cos \phi - \phi I/I_c\right)$$

REQUIREMENTS FOR JUNCTION PARAMETERS

Kinetic energy \leftrightarrow The charging energy of the capacitor The operator of charge \hat{Q} on the capacitor:

$$\frac{\hat{p}_{\phi}^2}{2M} = \frac{\hat{Q}^2}{2C}, \quad \hat{Q} = -2ie\frac{\partial}{\partial\phi}, \quad [\hat{Q}, \phi]_- = \frac{2e}{\hbar}[\hat{p}_{\phi}, \phi]_- = -2ie$$

Quantum uncertainty in phase $\Delta \phi$ and in charge ΔQ : $\Delta \phi \Delta Q \sim 2e$. Effects for $Q \sim e$ are important:

$$E_{C} = \frac{e^{2}}{2C} \gg k_{B}T, \quad C = \frac{\epsilon A}{4\pi d} \sim \frac{10 (100 \text{ nm})^{2}}{4\pi \cdot 1 \text{ nm}} \sim 10^{-15} \text{ F} \quad \Rightarrow \quad T \ll 1 \text{ K}$$

$$E_{C} \gg \frac{\hbar}{\Delta t} = \frac{\hbar}{RC} \quad \Rightarrow \quad R \gg \frac{2\hbar}{e^{2}} \sim R_{0} = \frac{\pi \hbar}{e^{2}}$$

$$R \quad C \quad R_{0} \ll R_{ext} \ll R$$
SUPERCONDUCTING QUANTUM ELECTRONICS

Rapidly developing field. One of key players in quantum engineering and quantum information processing.

CONCLUSIONS

- Superconductivity is ubiquitous in conducting systems: metals, alloys, dirty and disordered systems, organic materials, 2D system...
- Superconductivity originates in the Cooper pairing of conduction carriers. In many systems the attractive interaction is mediated by phonons and pairing occurs in spin-singlet, orbital momentum zero state. But more and more unconventional systems are being discovered.
- Besides zero resistivity, superconductors possess broad range of interesting and practically important properties: magnetic, thermal, etc.
- Nanotechnology opened a new world in studies and applications of superconductors, in particular due to good matching to important physical length scales. In nanodevices Josephson effect and Andreev bounds states usually play key roles.
- Superconductors provide access to quantum-mechanical coherence at macroscopic length scales: a base for revolutionizing the world with quantum technologies.

LITERATURE

M. Tinkham, *Introduction to superconductivity*. McGraw-Hill, New York. (1996); Dover Books (2004)

P. G. de Gennes, *Superconductivity of metals and alloys*.W. A. Benjamin, New York (1966); Perseus Books (1999)

A. A. Abrikosov, *Fundamentals of the theory of metals*. North Holland, Amsterdam (1998)